Straight-forward AND open-source alternatives to asreml-r for spatial models?
Asked Answered
C

0

6

In the past, I have used asreml-r to account for spatial auto-correlation in agricultural field trials that were laid out in a “row and range” design. It is relatively easy to use the asreml package to specify a spatial model (i.e. rcov=~at(LOCATION):ar1(ROW):ar1(RANGE))

Unfortunately, asreml-r is expensive and difficult to learn. My research group also prefers to rely on nlme and lmer for the majority of it’s analytical needs. So they are reluctant to either pay for asreml-r or consider using.

Several years ago a question was posted asking if an open-source alternative to asreml-r was available that could be used to construct a two-dimensional spatial model with error structure in both direction. The consensus at the time seemed to be that it wasn’t straight forward to do this in either lmer or nlme.

After spending a few hours searching, it’s not totally clear to me whether there has been any progress on addressing this. Can anyone refer me to a recent discussion regarding this type of analysis? Or can they offer advice on how to construct a mixed effects models that accounts for spatial correlation in nlme or lmer?

Please note that neither myself nor other members of our group are exactly statisticians or high-level r coders. It is also not practical to contract an outside group to analyze our data. We just want to apply the best methods we can to routine annual analyses of data.

An example of the data being analyzed:

my.data <- structure(list(ENTRY = structure(c(23L, 23L, 23L, 40L, 12L, 8L, 
1L, 15L, 30L, 1L, 24L, 8L, 1L, 8L, 30L, 33L, 12L, 38L, 41L, 36L, 
43L, 32L, 44L, 31L, 26L, 11L, 13L, 34L, 5L, 22L, 4L, 14L, 11L, 
20L, 25L, 11L, 21L, 43L, 44L, 4L, 42L, 45L, 42L, 41L, 42L, 4L, 
44L, 20L, 40L, 29L, 29L, 24L, 2L, 3L, 28L, 24L, 34L, 27L, 41L, 
28L, 29L, 5L, 3L, 25L, 14L, 20L, 15L, 21L, 31L, 22L, 40L, 21L, 
6L, 38L, 43L, 12L, 6L, 14L, 5L, 3L, 30L, 45L, 31L, 7L, 9L, 39L, 
22L, 15L, 26L, 28L, 34L, 10L, 25L, 27L, 16L, 45L, 10L, 18L, 32L, 
10L, 6L, 18L, 33L, 16L, 37L, 9L, 32L, 38L, 39L, 2L, 2L, 39L, 
36L, 36L, 7L, 27L, 7L, 26L, 17L, 9L, 33L, 13L, 17L, 17L, 35L, 
37L, 37L, 18L, 16L, 19L, 13L, 19L, 35L, 19L, 35L, 1L, 2L, 3L, 
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 
18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 
31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 
44L, 45L, 52L, 54L, 52L, 54L, 49L, 51L, 50L, 54L, 49L, 46L, 51L, 
50L, 53L, 49L, 50L, 51L, 53L, 52L, 53L, 48L, 47L, 46L, 46L, 47L, 
48L, 48L, 47L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L), .Label = c("20", 
"112", "1478", "1495", "1521", "1522", "1590", "1608", "1657", 
"1658", "1660", "1667", "1680", "1688", "1723", "1728", "1730", 
"1731", "1743", "1745", "1748", "1751", "1766", "1778", "1802", 
"1815", "1817", "1819", "1828", "1830", "1831", "1834", "1835", 
"1836", "1837", "1838", "1839", "1840", "1841", "1842", "1843", 
"1844", "1845", "1846", "1847", "3097", "3164", "3168", "3169", 
"3170", "3178", "3180", "3181", "3182"), class = "factor"), BLOCK = structure(c(12L, 
77L, 163L, 67L, 28L, 170L, 90L, 36L, 52L, 2L, 15L, 19L, 168L, 
103L, 188L, 31L, 203L, 66L, 29L, 46L, 34L, 32L, 27L, 16L, 83L, 
48L, 82L, 30L, 171L, 14L, 115L, 54L, 93L, 65L, 50L, 187L, 58L, 
91L, 200L, 6L, 169L, 135L, 99L, 148L, 101L, 104L, 107L, 128L, 
153L, 146L, 41L, 22L, 53L, 87L, 131L, 151L, 110L, 10L, 44L, 11L, 
13L, 20L, 42L, 202L, 111L, 38L, 183L, 51L, 199L, 109L, 75L, 134L, 
92L, 166L, 182L, 97L, 100L, 1L, 86L, 181L, 25L, 108L, 94L, 116L, 
72L, 18L, 23L, 76L, 185L, 81L, 62L, 63L, 56L, 204L, 85L, 95L, 
129L, 49L, 147L, 106L, 145L, 205L, 73L, 207L, 105L, 24L, 43L, 
8L, 167L, 164L, 3L, 96L, 184L, 45L, 74L, 39L, 89L, 4L, 152L, 
130L, 165L, 40L, 57L, 70L, 206L, 186L, 7L, 37L, 9L, 102L, 132L, 
127L, 88L, 80L, 98L, 139L, 196L, 174L, 118L, 215L, 194L, 193L, 
208L, 172L, 122L, 143L, 141L, 123L, 161L, 209L, 213L, 178L, 159L, 
160L, 191L, 177L, 192L, 144L, 175L, 211L, 140L, 180L, 173L, 125L, 
119L, 120L, 210L, 214L, 136L, 154L, 162L, 190L, 158L, 216L, 142L, 
124L, 212L, 195L, 155L, 121L, 64L, 68L, 117L, 59L, 71L, 35L, 
69L, 201L, 21L, 84L, 61L, 114L, 17L, 112L, 55L, 150L, 113L, 79L, 
78L, 47L, 33L, 149L, 60L, 189L, 5L, 133L, 26L, 137L, 197L, 179L, 
126L, 198L, 157L, 176L, 138L, 156L), .Label = c("101", "102", 
"103", "104", "105", "106", "107", "108", "109", "110", "111", 
"112", "113", "114", "115", "116", "117", "118", "201", "202", 
"203", "204", "205", "206", "207", "208", "209", "210", "211", 
"212", "213", "214", "215", "216", "217", "218", "301", "302", 
"303", "304", "305", "306", "307", "308", "309", "310", "311", 
"312", "313", "314", "315", "316", "317", "318", "401", "402", 
"403", "404", "405", "406", "407", "408", "409", "410", "411", 
"412", "413", "414", "415", "416", "417", "418", "501", "502", 
"503", "504", "505", "506", "507", "508", "509", "510", "511", 
"512", "513", "514", "515", "516", "517", "518", "601", "602", 
"603", "604", "605", "606", "607", "608", "609", "610", "611", 
"612", "613", "614", "615", "616", "617", "618", "701", "702", 
"703", "704", "705", "706", "707", "708", "709", "710", "711", 
"712", "713", "714", "715", "716", "717", "718", "801", "802", 
"803", "804", "805", "806", "807", "808", "809", "810", "811", 
"812", "813", "814", "815", "816", "817", "818", "901", "902", 
"903", "904", "905", "906", "907", "908", "909", "910", "911", 
"912", "913", "914", "915", "916", "917", "918", "1001", "1002", 
"1003", "1004", "1005", "1006", "1007", "1008", "1009", "1010", 
"1011", "1012", "1013", "1014", "1015", "1016", "1017", "1018", 
"1101", "1102", "1103", "1104", "1105", "1106", "1107", "1108", 
"1109", "1110", "1111", "1112", "1113", "1114", "1115", "1116", 
"1117", "1118", "1201", "1202", "1203", "1204", "1205", "1206", 
"1207", "1208", "1209", "1210", "1211", "1212", "1213", "1214", 
"1215", "1216", "1217", "1218"), class = "factor"), PLOT = structure(c(3L, 
1L, 2L, 3L, 3L, 2L, 3L, 3L, 3L, 1L, 3L, 1L, 2L, 3L, 2L, 3L, 2L, 
3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 2L, 3L, 1L, 
3L, 3L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 3L, 3L, 3L, 2L, 2L, 
2L, 1L, 1L, 3L, 3L, 2L, 2L, 2L, 3L, 1L, 3L, 3L, 1L, 1L, 2L, 2L, 
1L, 2L, 3L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 3L, 1L, 3L, 2L, 1L, 
3L, 1L, 2L, 3L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 2L, 
3L, 2L, 3L, 2L, 2L, 1L, 2L, 3L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 
1L, 1L, 1L, 3L, 1L, 2L, 2L, 2L, 1L, 1L, 3L, 2L, 2L, 1L, 1L, 1L, 
3L, 2L, 2L, 3L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 3L, 3L, 2L, 1L, 3L, 3L, 3L, 2L, 1L, 3L, 1L, 2L, 3L, 
2L, 1L, 2L, 2L, 1L, 1L, 3L, 3L, 2L, 1L, 2L, 1L, 2L, 1L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("1", "2", "3", "4"), class = "factor"), 
    RANGE = structure(c(1L, 5L, 10L, 4L, 2L, 10L, 5L, 2L, 3L, 
    1L, 1L, 2L, 10L, 6L, 11L, 2L, 12L, 4L, 2L, 3L, 2L, 2L, 2L, 
    1L, 5L, 3L, 5L, 2L, 10L, 1L, 7L, 3L, 6L, 4L, 3L, 11L, 4L, 
    6L, 12L, 1L, 10L, 8L, 6L, 9L, 6L, 6L, 6L, 8L, 9L, 9L, 3L, 
    2L, 3L, 5L, 8L, 9L, 7L, 1L, 3L, 1L, 1L, 2L, 3L, 12L, 7L, 
    3L, 11L, 3L, 12L, 7L, 5L, 8L, 6L, 10L, 11L, 6L, 6L, 1L, 5L, 
    11L, 2L, 6L, 6L, 7L, 4L, 1L, 2L, 5L, 11L, 5L, 4L, 4L, 4L, 
    12L, 5L, 6L, 8L, 3L, 9L, 6L, 9L, 12L, 5L, 12L, 6L, 2L, 3L, 
    1L, 10L, 10L, 1L, 6L, 11L, 3L, 5L, 3L, 5L, 1L, 9L, 8L, 10L, 
    3L, 4L, 4L, 12L, 11L, 1L, 3L, 1L, 6L, 8L, 8L, 5L, 5L, 6L, 
    8L, 11L, 10L, 7L, 12L, 11L, 11L, 12L, 10L, 7L, 8L, 8L, 7L, 
    9L, 12L, 12L, 10L, 9L, 9L, 11L, 10L, 11L, 8L, 10L, 12L, 8L, 
    10L, 10L, 7L, 7L, 7L, 12L, 12L, 8L, 9L, 9L, 11L, 9L, 12L, 
    8L, 7L, 12L, 11L, 9L, 7L, 4L, 4L, 7L, 4L, 4L, 2L, 4L, 12L, 
    2L, 5L, 4L, 7L, 1L, 7L, 4L, 9L, 7L, 5L, 5L, 3L, 2L, 9L, 4L, 
    11L, 1L, 8L, 2L, 8L, 11L, 10L, 7L, 11L, 9L, 10L, 8L, 9L), .Label = c("1", 
    "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"), class = "factor"), 
    ROW = structure(c(12L, 5L, 1L, 13L, 10L, 8L, 18L, 18L, 16L, 
    2L, 15L, 1L, 6L, 13L, 8L, 13L, 5L, 12L, 11L, 10L, 16L, 14L, 
    9L, 16L, 11L, 12L, 10L, 12L, 9L, 14L, 7L, 18L, 3L, 11L, 14L, 
    7L, 4L, 1L, 2L, 6L, 7L, 9L, 9L, 4L, 11L, 14L, 17L, 2L, 9L, 
    2L, 5L, 4L, 17L, 15L, 5L, 7L, 2L, 10L, 8L, 11L, 13L, 2L, 
    6L, 4L, 3L, 2L, 3L, 15L, 1L, 1L, 3L, 8L, 2L, 4L, 2L, 7L, 
    10L, 1L, 14L, 1L, 7L, 18L, 4L, 8L, 18L, 18L, 5L, 4L, 5L, 
    9L, 8L, 9L, 2L, 6L, 13L, 5L, 3L, 13L, 3L, 16L, 1L, 7L, 1L, 
    9L, 15L, 6L, 7L, 8L, 5L, 2L, 3L, 6L, 4L, 9L, 2L, 3L, 17L, 
    4L, 8L, 4L, 3L, 4L, 3L, 16L, 8L, 6L, 7L, 1L, 9L, 12L, 6L, 
    1L, 16L, 8L, 8L, 13L, 16L, 12L, 10L, 17L, 14L, 13L, 10L, 
    10L, 14L, 17L, 15L, 15L, 17L, 11L, 15L, 16L, 15L, 16L, 11L, 
    15L, 12L, 18L, 13L, 13L, 14L, 18L, 11L, 17L, 11L, 12L, 12L, 
    16L, 10L, 10L, 18L, 10L, 14L, 18L, 16L, 16L, 14L, 15L, 11L, 
    13L, 10L, 14L, 9L, 5L, 17L, 17L, 15L, 3L, 3L, 12L, 7L, 6L, 
    17L, 4L, 1L, 6L, 5L, 7L, 6L, 11L, 15L, 5L, 6L, 9L, 5L, 7L, 
    8L, 11L, 17L, 17L, 18L, 18L, 13L, 14L, 12L, 12L), .Label = c("1", 
    "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", 
    "13", "14", "15", "16", "17", "18"), class = "factor"), YIELD = c(7882.814724, 
    7641.976671, 7535.187491, 8462.821158, 6470.762695, 7086.39647, 
    7260.626003, 8374.363239, 8225.545799, 6870.562479, 7260.303179, 
    6472.786879, 6535.801894, 7335.468082, 8101.853381, 7544.810974, 
    5597.940891, 8144.903193, 8489.541356, 7420.247609, 8267.229308, 
    7388.809243, 8753.922873, 7675.2452, 7540.083649, 7459.719121, 
    7614.590404, 6910.577593, 7655.161236, 8086.00529, 6754.554032, 
    9141.060314, 7728.70075, 7210.881432, 8872.660416, 7341.942246, 
    8211.265337, 9030.218757, 8957.01212, 7134.079145, 8580.60533, 
    8901.807114, 9009.635596, 8972.04225, 8850.07798, 7244.08863, 
    9357.355395, 7693.962907, 9059.604638, 8115.135788, 8073.220877, 
    7694.865425, 7168.389384, 7931.776306, 8310.054831, 7743.358631, 
    7241.417998, 7887.710882, 8671.335868, 7900.074562, 7089.929401, 
    8252.964285, 8038.601576, 8749.99335, 7880.418003, 7227.593551, 
    9733.562528, 7715.095262, 6926.775409, 7770.203085, 9000.211927, 
    7808.710708, 8239.82626, 8252.964285, 9546.314331, 2801.654022, 
    7865.302917, 6472.037973, 11286.93314, 7698.702989, 8239.164252, 
    8391.871173, 7817.085477, 7987.7324, 8517.420004, 8286.027753, 
    8021.268999, 8605.836444, 8360.390812, 8408.648702, 6980.52271, 
    8484.391646, 7604.489488, 8047.32564, 6859.736888, 8211.744547, 
    8338.224508, 7549.875965, 7831.170315, 8002.372075, 8092.398475, 
    7233.303386, 7880.198456, 6431.676768, 8146.454012, 9012.217125, 
    7696.760712, 7916.314754, 8372.430545, 4552.305881, 4744.119616, 
    8072.706265, 8038.601576, 8070.612573, 7631.800415, 8124.412039, 
    7958.686488, 8565.578204, 7204.2532, 7782.851494, 8195.743097, 
    8075.444598, 7468.681342, 7376.4572, 7019.132415, 7450.186973, 
    7900.853201, 7077.396698, 6781.366002, 8195.304822, 7581.211378, 
    8155.600681, 7446.611537, 7887.710882, 6849.690117, 6384.206298, 
    6965.647058, 7732.576444, 7687.296996, 7887.710882, 8061.034883, 
    7861.831189, 6690.298381, 7982.777954, 8310.054831, 7476.530867, 
    5840.137517, 8012.816166, 9211.484507, 8906.076566, 7227.155276, 
    6795.608201, 6926.023806, 8026.998142, 7388.809243, 7700.812705, 
    7493.134187, 7397.470718, 6794.411986, 8475.249868, 8387.892097, 
    8503.435859, 7890.106874, 7631.800415, 8349.757061, 7852.912013, 
    7758.848165, 7580.919692, 6402.21648, 6920.804051, 8628.194894, 
    7489.137138, 7866.037678, 7311.596266, 8746.497033, 9147.374207, 
    9022.033508, 8475.348448, 8911.007949, 8961.95446, 8476.003123, 
    8932.837953, 8661.336305, 8949.625535, 9048.100379, 10684.87284, 
    8845.185424, 8182.999872, 8986.675848, 8136.137692, 10504.2443, 
    8848.254372, 7233.813327, 8707.732966, 8381.547529, 10471.33626, 
    7682.888263, 8071.666541, 7428.171461, 9736.360333, 9378.789551, 
    8294.552055, 8225.545799, 8874.930993, 8459.226077, 8749.99335, 
    9192.455984, 7875.820212, 8982.410256, 8642.199262, 8935.14394, 
    8480.821358, 10240.80452, 8746.68483, 7619.897735, 8417.475201
    )), .Names = c("ENTRY", "BLOCK", "PLOT", "RANGE", "ROW", 
"YIELD"), row.names = 372:587, class = "data.frame")

The spatial arrangement of the data:

library(reshape2)
dcast(my.data, RANGE ~ ROW, value.var ="YIELD")

Possible examples of models to analyze the data:

library(nlme)
fit1 = lme(fixed = YIELD ~ ENTRY, data = my.data, 
          random= ~1 | BLOCK,
          method = "ML")

fit2 = lme(fixed = YIELD ~ ENTRY, data = my.data, 
           random= ~1 | BLOCK,
           corr = corSpatial(form = ~RANGE+ROW), 
           method = "ML")
Calvo answered 12/6, 2018 at 16:23 Comment(3)
You might have a look at the "SpATS" package for modeling (single loc at a time) the spatial trends. Another package to investigate is the "sommar" package.Hoke
Thanks, Kevin. I'll check those out.Calvo
Sorry, it's "sommer". cran.r-project.org/web/packages/sommer/index.htmlHoke

© 2022 - 2024 — McMap. All rights reserved.