Managed to solve problem now
I have a set of around 50 thousand points that have coordinates and one value associated with them. I would like to be able to place points into a grid averaging the associated value of all points that fall into a grid square. So I want to end up with an object that identifies each grid square and gives the average inside the grid square.
I have the data in a spatial points data frame and a spatial grid object if that helps.
Improving answer: I have definitely done some searching, sorry about the initial state of the question I had only managed to frame the question inside my own head; hadn't had to communicate it to anyone else before...
Here is example data that hopefully illustrates the problem more clearly
##make some data
longi <- runif(100,0,10)
lati <- runif(100,0,10)
value <- runif(500,20,30)
##put in data frame then change to spatial data frame
df <- data.frame("lon"=longi,"lat"=lati,"val"=value)
coordinates(df) <- c("lon","lat")
proj4string(df) <- CRS("+proj=longlat")
##create a grid that bounds the data
grd <- GridTopology(cellcentre.offset=bbox(df)[,1],
cellsize=c(1,1),cells.dim=c(11,11))
sg <- SpatialGrid(grd)
Then I hope to get an object albeit a vector/data frame/list that gives me the average of value in each grid cell/square and some way of identifying which cell it is.
Solution
##convert the grid into a polygon##
polys <- as.SpatialPolygons.GridTopology(grd)
proj4string(polys) <- CRS("+proj=longlat")
##can now use the function over to select the correct points and average them
results <- rep(0, length(polys))
for(i in 1:length(polys)) {
results[i] = mean(df$val[which(!is.na(over(x=df,y=polys[i])))])
}
My question now is if this is the best way to do it or is there a more efficient way?