Title says it all.
I need to split n
as sum of k
parts where each part ki should be in the range of
1 <= ki <= ri for given array r
.
for example -
n = 4, k = 3 and r = [2, 2, 1]
ans = 2
#[2, 1, 1], [1, 2, 1]
Order matters. (2, 1, 1) and (1, 2, 1) are different.
I taught of solving it using stars and bars method, but be because of upper bound ri i dont know to to approach it.
i implemented a direct recursion function and it works fine for small values only.
Constraints of original problem are
1 <= n <= 10
7
1 <= k <= 10
5
1 <= r
i
<= 51
All calculations will be done under prime Modulo.
i found a similar problem here but i don't know how to implement in program. HERE
My brute-force recursive function -
#define MAX 1000
const int md = 1e9 + 7;
vector <int> k;
vector <map<int, int>> mapper;
vector <int> hold;
int solve(int sum, int cur){
if(cur == (k.size() - 1) && sum >= 1 && sum <= k[cur]) return 1;
if(cur == (k.size() - 1) && (sum < 1 || sum > k[cur])) return 0;
if(mapper[cur].find(sum) != mapper[cur].end())
return mapper[cur][sum];
int ans = 0;
int start = 1;
for(int i=start; i<=k[cur]; ++i){
int remain = sum - i;
int seg = (k.size() - cur) - 1;
if(remain < seg) break;
int res = solve(sum - i, cur + 1);
ans = (1LL * ans + res) % md;
}
mapper[cur][sum] = ans;
return ans;
}
int main(){
for(int i=0; i<MAX; ++i) k.push_back(51); // restriction for each part default 51
mapper.resize(MAX);
cout << solve(MAX + MAX, 0) << endl;
}
Instead of using a map for storing result of computation i used a two dimensional array and it gave very good performance boost but i cannot use it because of large n and k values.
How could i improve my recursive function or what are other ways of solving this problem.
k
always equal to the size ofr
? – Guyguyana