I suppose there are many ways to do this.
If you can use at least C++14, I propose to use the power of decltype()
and std::tuple_cat()
as follow:
(1) declare (there is no reason of define because are used through decltype()
a couple of overloaded (and SFINAE enabled/disabled) as follows
template <std::size_t Imin, std::size_t Imax, std::size_t I, typename T>
std::enable_if_t<(Imin <= I) && (I < Imax), std::tuple<T>> getTpl ();
template <std::size_t Imin, std::size_t Imax, std::size_t I, typename>
std::enable_if_t<(I < Imin) || (Imax <= I), std::tuple<>> getTpl ();
The idea is return a std::tuple<T>
when the index is in the right range, a std::tuple<>
otherwise.
(2) define an helper class to convert a std::tuple<Ts...>
to a TypeA<Ts...>
template <typename>
struct pta_helper2;
template <typename ... Ts>
struct pta_helper2<std::tuple<Ts...>>
{ using type = TypeA<Ts...>; };
(3) define an helper class that concatenate in a tuple only the types in the correct range
template <std::size_t, std::size_t, typename ... Ts>
struct pta_helper1;
template <std::size_t I0, std::size_t I1, std::size_t ... Is, typename ... Ts>
struct pta_helper1<I0, I1, std::index_sequence<Is...>, Ts...>
: public pta_helper2<decltype(std::tuple_cat(getTpl<I0, I1, Is, Ts>()...))>
{ };
The idea is concatenate a sequence of std::tuple<>
and std::tuple<T>
, where the T
types are the type inside the requested range; the resulting type (the template argument of pta_helper2
) is a std::tuple<Us...>
where the Us...
are exactly the types in the requested range.
(4) define a using
type to use the preceding helper class in a simpler way
template <std::size_t I0, std::size_t I1, typename ... Ts>
using proTypeA = typename pta_helper1<
I0, I1, std::make_index_sequence<sizeof...(Ts)>, Ts...>::type;
(5) now your TypeB
simply become
template <typename ... Ts>
struct TypeB : public proTypeA<0u, sizeof...(Ts)/2u, Ts...>,
public proTypeA<sizeof...(Ts)/2u, sizeof...(Ts), Ts...>
{ };
The following is a full compiling C++14 example example
#include <tuple>
#include <type_traits>
template <typename ...>
struct TypeA
{ };
template <std::size_t Imin, std::size_t Imax, std::size_t I, typename T>
std::enable_if_t<(Imin <= I) && (I < Imax), std::tuple<T>> getTpl ();
template <std::size_t Imin, std::size_t Imax, std::size_t I, typename>
std::enable_if_t<(I < Imin) || (Imax <= I), std::tuple<>> getTpl ();
template <typename>
struct pta_helper2;
template <typename ... Ts>
struct pta_helper2<std::tuple<Ts...>>
{ using type = TypeA<Ts...>; };
template <std::size_t, std::size_t, typename ... Ts>
struct pta_helper1;
template <std::size_t I0, std::size_t I1, std::size_t ... Is, typename ... Ts>
struct pta_helper1<I0, I1, std::index_sequence<Is...>, Ts...>
: public pta_helper2<decltype(std::tuple_cat(getTpl<I0, I1, Is, Ts>()...))>
{ };
template <std::size_t I0, std::size_t I1, typename ... Ts>
using proTypeA = typename pta_helper1<
I0, I1, std::make_index_sequence<sizeof...(Ts)>, Ts...>::type;
template <typename ... Ts>
struct TypeB : public proTypeA<0u, sizeof...(Ts)/2u, Ts...>,
public proTypeA<sizeof...(Ts)/2u, sizeof...(Ts), Ts...>
{ };
int main()
{
using tb = TypeB<char, short, int, long, long long>;
using ta1 = TypeA<char, short>;
using ta2 = TypeA<int, long, long long>;
static_assert(std::is_base_of<ta1, tb>::value, "!");
static_assert(std::is_base_of<ta2, tb>::value, "!");
}