How to structure and distribute Pybind11 extension with stubs?
Asked Answered
D

1

6

I'm trying to create and distribute (with pip) a Python package that has Python code, and C++ code compiled to a .pyd file with Pybind11 (using Visual Studio 2019). I also want to include .pyi stub files, for VScode and other editors. I can't find much documentation on doing this correctly.

I'd like to be able to just install the package via pip as normal, and write from mymodule.mysubmodule import myfunc etc like a normal Python package, including autocompletes, type annotations, VScode intellisense etc using the .pyi files I'd write.

My C++ code is in multiple cpp and header files. It uses a few standard libraries, and a few external libraries (such as boost). It defines a single module, and 2 submodules. I want to be able to distribute this on Windows and Linux, and for x86 and x64. I am currently targeting Python 3.9, and the c++17 standard.

How should I structure and distribute this package? Do I include the c++ source files, and create a setup.py similar to the Pybind11 example? If so, how do I include the external libraries? And how do I structure the .pyi stub files? Does this mean whoever tries to install my package would need a c++ compiler as well?

Or, should I compile my c++ to a .pyd/.so file for each platform and architecture? If so, is there a way to specify which one gets installed through pip? And again, how would I structure the .pyi stubs?

Doralynn answered 24/1, 2021 at 22:55 Comment(0)
Z
2

Generating .pyi stubs

The pybind11 issue mentions a couple of tools (1, 2) to generate stubs for binary modules. There could be more, but I'm not aware of others. Unfortunately both are far from being perfect, so you probably still need to check and adjust the generated stubs manually.

Distribution of .pyi stubs

After correction of stubs you just include those .pyi files in you distribution (e.g. in wheel or as sources) along with py.typed indication file or, alternatively, distribute them separately as standalone package (e.g. mypackage-stubs).

Building wheels

Wheels allows users of your library to install it in binary form, i.e. without compilation. Wheels makes use of older compilers in order to be compatible with greater number of systems/platforms, so you might face some troubles with a C++17 library. (C++11 is old enough and should have no problems with wheels).

Building wheels for various platforms is tedious, the pybind11's python_example uses cibuildwheels package to do that, I would recommend this route if you are already using CI.

If wheels are missing for target platform the pip will attempt to install from source. This would require compiler and 3rd party libraries you are using to be already installed.

Maybe conda?

If your setup is complex and requires a number of 3rd party libraries it might be worth to write a conda recipe and use conda-forge to generate binary versions of the package. Conda is superior to pip, since it can manage non-python dependencies as well.

Zoogloea answered 25/1, 2021 at 13:37 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.