I believe these kinds of things are done regularly in constraint logic programming. Unfortunatly I'm not experienced enough in it to give more accurate details, but that should be a good starting point.
The general principle is simple: an unbound variable can have any value; as you test it against inequalities, it's set of possible values are restricted by one or more intervals. When/if those intervals converge to a single point, that variable is bound to that value. If, OTOH, any of those inequalities are deemed unsolvable for every value in the intervals, a [programming] logic failure occurs.
See also this, for an example of how this is done in practice using swi-prolog. Hopefully you will find links or references to the underlying algorithms, so you can reproduce them in your platform of choice (maybe even finding ready-made libraries).
Update: I tried to reproduce your example using swi-prolog and clpfd, but didn't get the results I expected, only close ones. Here's my code:
?- [library(clpfd)].
simplify(A,B,C,D) :-
A #= 1 ,
(B #= 1 ; B #\= 0 ) ,
(C #>= 35 ; D #\= 5) ,
(C #>= 38 ; D #= 6).
And my results, on backtracking (line breaks inserted for readability):
10 ?- simplify(A,B,C,D).
A = 1,
B = 1,
C in 38..sup ;
A = 1,
B = 1,
D = 6,
C in 35..sup ;
A = 1,
B = 1,
C in 38..sup,
D in inf..4\/6..sup ;
A = 1,
B = 1,
D = 6 ;
A = 1,
B in inf.. -1\/1..sup,
C in 38..sup ;
A = 1,
D = 6,
B in inf.. -1\/1..sup,
C in 35..sup ;
A = 1,
B in inf.. -1\/1..sup,
C in 38..sup,
D in inf..4\/6..sup ;
A = 1,
D = 6,
B in inf.. -1\/1..sup.
11 ?-
So, the program yielded 8 results, among those the 2 you were interested on (5th and 8th):
A = 1,
B in inf.. -1\/1..sup,
C in 38..sup ;
A = 1,
D = 6,
B in inf.. -1\/1..sup.
The other were redundant, and maybe could be eliminated using simple, automatable logic rules:
1st or 5th ==> 5th [B == 1 or B != 0 --> B != 0]
2nd or 4th ==> 4th [C >= 35 or True --> True ]
3rd or 1st ==> 1st ==> 5th [D != 5 or True --> True ]
4th or 8th ==> 8th [B == 1 or B != 0 --> B != 0]
6th or 8th ==> 8th [C >= 35 or True --> True ]
7th or 3rd ==> 3rd ==> 5th [B == 1 or B != 0 --> B != 0]
I know it's a long way behind being a general solution, but as I said, hopefully it's a start...
P.S. I used "regular" AND and OR (,
and ;
) because clpfd's ones (#/\
and #\/
) gave a very weird result that I couldn't understand myself... maybe someone more experienced can cast some light on it...