The example provided in the accepted answer gives the gist of it, but you can get away with something a bit simpler as well by using zmq.device
for the broker while otherwise sticking to the "Extended Request-Reply" pattern from the guide. As such, a hello worldy example for the server could look something like the following:
import time
import threading
import zmq
context = zmq.Context()
def worker():
socket = context.socket(zmq.REP)
socket.connect('inproc://workers')
while True:
msg = socket.recv_string()
print(f'Received request: [{msg}]')
time.sleep(1)
socket.send_string(msg)
url_client = 'tcp://*:5556'
clients = context.socket(zmq.ROUTER)
clients.bind(url_client)
workers = context.socket(zmq.DEALER)
workers.bind('inproc://workers')
for _ in range(4):
thread = threading.Thread(target=worker)
thread.start()
zmq.device(zmq.QUEUE, clients, workers)
Here we're letting four workers handle incoming requests in parallel. Now, you're using Node on the client side, but just to keep the example complete, one can use the Python client below to see that this works. Here, we're creating 10 requests which will then be handled in 3 batches:
import zmq
import threading
context = zmq.Context()
def make_request(a):
socket = context.socket(zmq.REQ)
socket.connect('tcp://localhost:5556')
print(f'Sending request {a} ...')
socket.send_string(str(a))
message = socket.recv_string()
print(f'Received reply from request {a} [{message}]')
for a in range(10):
thread = threading.Thread(target=make_request, args=(a,))
thread.start()