My problem is to extract in the most efficient way N Poisson random values (RV
) each with a different mean/rate Lam
. Basically the size(RV) == size(Lam)
.
Here it is a naive (very slow) implementation:
import numpy as NP
def multi_rate_poisson(Lam):
rv = NP.zeros(NP.size(Lam))
for i,lam in enumerate(Lam):
rv[i] = NP.random.poisson(lam=lam, size=1)
return rv
That, on my laptop, with 1e6 samples gives:
Lam = NP.random.rand(1e6) + 1
timeit multi_poisson(Lam)
1 loops, best of 3: 4.82 s per loop
Is it possible to improve from this?