Conclusion: Heuristic functions that produce negative values are not inadmissible, per se, but have the potential to break the guarantees of A*.
Interesting question. Fundamentally, the only requirement for admissibility is that a heuristic never over-estimates the distance to the goal. This is important, because an overestimate in the wrong place could artificially make the best path look worse than another path, and prevent it from ever being explored. Thus a heuristic that can provide overestimates loses any guarantee of optimality. Underestimating does not carry the same costs. If you underestimate the cost of going in a certain direction, eventually the edge weights will add up to be greater than the cost of going in a different direction, so you'll explore that direction too. The only problem is loss of efficiency.
If all of your edges have positive costs, a negative heuristic value can only over be an underestimate. In theory, an underestimate should only ever be worse than a more precise estimate, because it provides strictly less information about the potential cost of a path, and is likely to result in more nodes being expanded. Nevertheless, it will not be inadmissible.
However, here is an example that demonstrates that it is theoretically possible for negative heuristic values to break the guaranteed optimality of A*:
In this graph, it is obviously better to go through nodes A and B. This will have a cost of three, as opposed to six, which is the cost of going through nodes C and D. However, the negative heuristic values for C and D will cause A* to reach the end through them before exploring nodes A and B. In essence, the heuristic function keeps thinking that this path is going to get drastically better, until it is too late. In most implementations of A*, this will return the wrong answer, although you can correct for this problem by continuing to explore other nodes until the greatest value for f(n) is greater than the cost of the path you found. Note that there is nothing inadmissible or inconsistent about this heuristic. I'm actually really surprised that non-negativity is not more frequently mentioned as a rule for A* heuristics.
Of course, all that this demonstrates is that you can't freely use heuristics that return negative values without fear of consequences. It is entirely possible that a given heuristic for a given problem would happen to work out really well despite being negative. For your particular problem, it's unlikely that something like this is happening (and I find it really interesting that it works so well for your problem, and still want to think more about why that might be).