I'd strongly encourage you to look into data.table and foreach, using keyed searches for bootstraps. It'll allow you to do a single bootstrap very rapidly, and you can run each bootstrap independently on a different core. Each bootstrap of the below takes 0.5 seconds on my machine, searching through a table of 1 million rows. Something like the following should get you started:
library(data.table)
library(foreach)
library(doMC)
registerDoMC(cores=4)
# example data
dat <- data.table(id=1:1e6, group=sample(2, size=1e6, replace=TRUE), test_control=sample(c("T","C"), size=1e5, replace=TRUE))
# define number of bootstraps
nBootstraps <- 1000
# define sampling fractions
fraction_test <- 0.90
fraction_control <- 1 - fraction_test
# get number that you want to sample from each group
N.test <- round(fraction_test * dim(dat)[1])
N.control <- round(fraction_control * dim(dat)[1])
# key data by id
setkey(dat, id)
# get ID values for each combination, to be used for keyed search during bootstrapping
group1_test_ids <- dat[group==1 & test_control=="T"]$id
group1_control_ids <- dat[group==1 & test_control=="C"]$id
group2_test_ids <- dat[group==2 & test_control=="T"]$id
group2_control_ids <- dat[group==2 & test_control=="C"]$id
results <- foreach(n = 1:nBootstraps, .combine="rbind", .inorder=FALSE) %dopar% {
# sample each group with the defined sizes, with replacement
g1T <- dat[.(sample(group1_test_ids, size=N.test, replace=TRUE))]
g1C <- dat[.(sample(group1_control_ids, size=N.control, replace=TRUE))]
g2T <- dat[.(sample(group2_test_ids, size=N.test, replace=TRUE))]
g2C <- dat[.(sample(group2_control_ids, size=N.control, replace=TRUE))]
dat.all <- rbindlist(list(g1T, g1C, g2T, g2C))
dat.all[, bootstrap := n]
# do summary stats here with dat.all, return the summary stats data.table object
return(dat.summarized)
}
EDIT: example below includes a lookup table for each of any arbitrary number of unique groups. The IDs corresponding to each combination of group + (test OR control) can be referenced within a foreach loop for simplicity. With lower numbers for N.test and N.control (900 and 100) it spits out the results of 1000 bootstraps in
library(data.table)
library(foreach)
# example data
dat <- data.table(id=1:1e6, group=sample(24, size=1e6, replace=TRUE), test_control=sample(c("T","C"), size=1e5, replace=TRUE))
# save vector of all group values & change group to character vector for hashed environment lookup
all_groups <- as.character(sort(unique(dat$group)))
dat[, group := as.character(group)]
# define number of bootstraps
nBootstraps <- 100
# get number that you want to sample from each group
N.test <- 900
N.control <- 100
# key data by id
setkey(dat, id)
# all values for group
# Set up lookup table for every combination of group + test/control
control.ids <- new.env()
test.ids <- new.env()
for(i in all_groups) {
control.ids[[i]] <- dat[group==i & test_control=="C"]$id
test.ids[[i]] <- dat[group==i & test_control=="T"]$id
}
results <- foreach(n = 1:nBootstraps, .combine="rbind", .inorder=FALSE) %do% {
foreach(group.i = all_groups, .combine="rbind") %do% {
# get IDs that correspond to this group, for both test and control
control_id_vector <- control.ids[[group.i]]
test_id_vector <- test.ids[[group.i]]
# search and bind
controls <- dat[.(sample(control_id_vector, size=N.control, replace=TRUE))]
tests <- dat[.(sample(test_id_vector, size=N.test, replace=TRUE))]
dat.group <- rbindlist(list(controls, tests))
dat.group[, bootstrap := n]
return(dat.group[])
}
# summarize across all groups for this bootstrap and return summary stat data.table object
}
yielding
> results
id group test_control bootstrap
1: 701570 1 C 1
2: 424018 1 C 1
3: 909932 1 C 1
4: 15354 1 C 1
5: 514882 1 C 1
---
23999996: 898651 24 T 1000
23999997: 482374 24 T 1000
23999998: 845577 24 T 1000
23999999: 862359 24 T 1000
24000000: 602078 24 T 1000
This doesn't involve any of the summary stat calculation time, but here 1000 bootstraps were pulled out on 1 core serially in
user system elapsed
62.574 1.267 63.844
If you need to manually code N to be different for each group, you can do the same thing as with id lookup
# create environments
control.Ns <- new.env()
test.Ns <- new.env()
# assign size values
control.Ns[["1"]] <- 900
test.Ns[["1"]] <- 100
control.Ns[["2"]] <- 400
test.Ns[["2"]] <- 50
... ...
control.Ns[["24"]] <- 200
test.Ns[["24"]] <- 5
then change the big bootstrap loop to look up these values based on the loop's current group:
results <- foreach(n = 1:nBootstraps, .combine="rbind", .inorder=FALSE) %do% {
foreach(group.i = all_groups, .combine="rbind") %do% {
# get IDs that correspond to this group, for both test and control
control_id_vector <- control.ids[[group.i]]
test_id_vector <- test.ids[[group.i]]
# get size values
N.control <- control.Ns[[group.i]]
N.test <- test.Ns[[group.i]]
# search and bind
controls <- dat[.(sample(control_id_vector, size=N.control, replace=TRUE))]
tests <- dat[.(sample(test_id_vector, size=N.test, replace=TRUE))]
dat.group <- rbindlist(list(controls, tests))
dat.group[, bootstrap := n]
return(dat.group[])
}
# summarize across all groups for this bootstrap and return summary stat data.table object
}
unique(datafile$groups)
just1:2
, or at least a constant for everyj
? Theinitialize empty dataset
line doesn't seem to do anything either. Even so I'm surprised that this part of the code takes more than a few seconds for each replication, let alone > 3 minutes. On my machine with some dummy data it executes in 0.02s. – Outspeak