I have created a physics system that handles any collision object to any collision object like so:
namespace Collision
{
template <typename T, typename U>
inline void Check(T& t, U& u)
{
if(u.CheckCollision(t.GetCollider()))
{
u.HitBy(t);
t.Hit(u);
}
}
}
and there are several other helper objects to make it easy to use, but the gist is that there are dynamic objects that need to be tested against static objects and other dynamic objects, but static objects don't need to be checked.
What I would like is something like this:
void func()
{
PhysicsWorld world;
shared_ptr<CSphere> ballPhysics(new CSphere(0,0,ballSprite->Width()));
BallCommand ballBehavior;
CBounds bounds(0, 0, 640, 480);
CBox obstacle(200, 150, 10, 10);
Collision::Collidable<CBounds> boundC(bounds);
Collision::Collidable<std::shared_ptr<CSphere>, BallCommand&> ballC(ballPhysics, ballBehavior);
Collision::Collidable<CBox> obstC(obstacle);
world.addStatic(boundC);
world.addDynamic(ballC);
world.addStatic(obstC);
...
...
world.Update();
...
...
}
I'd love to deduce the containers through the add functions so using the system automatically updates the type lists. I think I get how to generate a typelist with a template function, but not how to then get it where I need it, or at what point in compilation it is complete.
If not that then some system using two typelists that then internally writes the update function to iterate through all the lists pairing them up against each other.
I've read some of the boost MPL book and read Andrei's book several times. But, I seem to get caught up in the how it works stuff and don't really translate that into how do I use it. I wish they had one more section on real world examples in the MPL book.
I've been able to get all of the pieces of a game engine to interact with rendering, physics, collisions (I separate detection from reaction), input, network, sound, etc. All in generic ways. Now I just need to hold all the things in a generic way. After all that generic work, it would be silly to require inheritance just so I can hold something in a container and I don't want to hand code every collection possibility as that is one of the great benefits of generic programming.
I saw Jalf had indicated that s/he used MPL to do something similar, but did not go into details enough for me to figure it out. If anyone knows a practical use example or where I can get more info on using the MPL I'd be grateful.
Thanks again!
Update
boost MPL and boost Fusion both seem to do what I want, but there appears to be very little in the way of good real life examples of either libraries. The documentation for MPL is little more than this template does this and good luck understanding the implications of that. Fusion is a bit better with "Here's an example but it's just the tip of the iceberg!"
A typical boost MPL example is has_xxx. They use XXX and xxx in the example making it difficult to see the difference where XXX(The required text) and Test or CheckType or any more distinguishable user type could be used in place of xxx. Plus there is no mention that none of this is in a namespace. Now I know why Scott meyers compared this to the shower scene in Psycho.
It's a shame really because what little I have gotten to compile and understand does really useful things, but is so hard to figure out I would never spend this much effort if I was on a shipping product.
If anyone knows real world examples or better references, explanations, or tutorial I would be grateful.
Update
Here's more code:
template <typename T, typename V = VictimEffect, typename M = MenaceEffect>
class Collidable
{
T m_Collider;
V m_HitBy;
M m_Hit;
public:
Collidable(T collide, V victim, M menace) : m_Collider(collide), m_HitBy(victim), m_Hit(menace) {;}
Collidable(T collide) : m_Collider(collide) {;}
Collidable(T collide, V victim) : m_Collider(collide), m_HitBy(victim) {;}
T& GetCollider()
{
return m_Collider;
}
template <typename V>
void HitBy(V& menace)
{
m_HitBy.HitBy(menace.GetCollider());
}
template <typename V>
void Hit(V& victim)
{
m_Hit.Hit(victim.GetCollider());
}
template <typename V>
bool CheckCollision(V& menace)
{
return m_Collider.CheckCollision(menace);
}
};
Then to use it I do this
Collidable<Boundary, BallCommand> boundC(boundary, ballBehavior);
Collidable<CollisionBox> ballC(circle);
Then all I need is to call collide with all my active collidable objects against all my active and passive objects.
I'm not using std::function because the addition of function names makes the code clearer to me. But maybe that's just legacy thinking.
multiple dispatch
. So you can re-re-read the related chapter from Andrei's book ... Cheers – Senescent