This seems to be a common question with no easy answer. Both other answer have scalability issues. The ring-communication approach has linear communication cost, while in the one-sided MPI_Win
-solution, a single process will be hammered with memory requests from all workers. This may be fine for low number of ranks, but pose issues when increasing the rank count.
Non-blocking collectives can provide a more scalable better solution. The main idea is to post a MPI_Ibarrier
on all ranks except on one designated root. This root will listen to point-to-point stop messages via MPI_Irecv
and complete the MPI_Ibarrier
once it receives it.
The tricky part is that there are four different cases "{root, non-root} x {found, not-found}" that need to be handled. Also it can happen that multiple ranks send a stop message, requiring an unknown number of matching receives on the root. That can be solved with an additional reduction that counts the number of ranks that sent a stop-request.
Here is an example how this can look in C:
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
const int iter_max = 10000;
const int difficulty = 20000;
int find_stuff()
{
int num_iters = rand() % iter_max;
for (int i = 0; i < num_iters; i++) {
if (rand() % difficulty == 0) {
return 1;
}
}
return 0;
}
const int stop_tag = 42;
const int root = 0;
int forward_stop(MPI_Request* root_recv_stop, MPI_Request* all_recv_stop, int found_count)
{
int flag;
MPI_Status status;
if (found_count == 0) {
MPI_Test(root_recv_stop, &flag, &status);
} else {
// If we find something on the root, we actually wait until we receive our own message.
MPI_Wait(root_recv_stop, &status);
flag = 1;
}
if (flag) {
printf("Forwarding stop signal from %d\n", status.MPI_SOURCE);
MPI_Ibarrier(MPI_COMM_WORLD, all_recv_stop);
MPI_Wait(all_recv_stop, MPI_STATUS_IGNORE);
// We must post some additional receives if multiple ranks found something at the same time
MPI_Reduce(MPI_IN_PLACE, &found_count, 1, MPI_INT, MPI_SUM, root, MPI_COMM_WORLD);
for (found_count--; found_count > 0; found_count--) {
MPI_Recv(NULL, 0, MPI_CHAR, MPI_ANY_SOURCE, stop_tag, MPI_COMM_WORLD, &status);
printf("Additional stop from: %d\n", status.MPI_SOURCE);
}
return 1;
}
return 0;
}
int main()
{
MPI_Init(NULL, NULL);
int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
srand(rank);
MPI_Request root_recv_stop;
MPI_Request all_recv_stop;
if (rank == root) {
MPI_Irecv(NULL, 0, MPI_CHAR, MPI_ANY_SOURCE, stop_tag, MPI_COMM_WORLD, &root_recv_stop);
} else {
// You may want to use an extra communicator here, to avoid messing with other barriers
MPI_Ibarrier(MPI_COMM_WORLD, &all_recv_stop);
}
while (1) {
int found = find_stuff();
if (found) {
printf("Rank %d found something.\n", rank);
// Note: We cannot post this as blocking, otherwise there is a deadlock with the reduce
MPI_Request req;
MPI_Isend(NULL, 0, MPI_CHAR, root, stop_tag, MPI_COMM_WORLD, &req);
if (rank != root) {
// We know that we are going to receive our own stop signal.
// This avoids running another useless iteration
MPI_Wait(&all_recv_stop, MPI_STATUS_IGNORE);
MPI_Reduce(&found, NULL, 1, MPI_INT, MPI_SUM, root, MPI_COMM_WORLD);
MPI_Wait(&req, MPI_STATUS_IGNORE);
break;
}
MPI_Wait(&req, MPI_STATUS_IGNORE);
}
if (rank == root) {
if (forward_stop(&root_recv_stop, &all_recv_stop, found)) {
break;
}
} else {
int stop_signal;
MPI_Test(&all_recv_stop, &stop_signal, MPI_STATUS_IGNORE);
if (stop_signal)
{
MPI_Reduce(&found, NULL, 1, MPI_INT, MPI_SUM, root, MPI_COMM_WORLD);
printf("Rank %d stopping after receiving signal.\n", rank);
break;
}
}
};
MPI_Finalize();
}
While this is not the simplest code, it should:
- Introduce no additional blocking
- Scale with the implementation of a barrier (usually
O(log N)
)
- Have a worst-case-latency from one found, to all stop of 2 * loop time ( + 1 p2p + 1 barrier + 1 reduction).
- If many/all ranks find a solution at the same time, it still works but may be less efficient.