While cricket007's answer works for spark-submit, here is what I did to run against a remote cluster using IntelliJ:
First, make sure the JARs on the client and server sides are identical. Since we are using CDH 7.1, I made sure all my JARs came from the specific distribution.
Set HADOOP_CONF_DIR and YARN_CONF_DIR as described in cricket007's answer. Set "spark.yarn.principal" and "spark.yarn.keytab" as appropriate in the Spark conf.
If connecting to HDFS, make sure the following exclusion rule is set in build.sbt:
libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.6.0-cdh5.7.1" excludeAll ExclusionRule(organization = "javax.servlet")
Make sure the spark-launcher and spark-yarn JARs are listed on build.sbt.
libraryDependencies += "org.apache.spark" %% "spark-launcher" % "1.6.0-cdh5.7.1"
libraryDependencies += "org.apache.spark" %% "spark-yarn" % "1.6.0-cdh5.7.1"
Find the CDH JARs on the server and copy them to a known location on HDFS. Add the following lines to your code:
final val CDH_JAR_PATH = "/opt/cloudera/parcels/CDH/jars"
final val hadoopJars: Seq[String] = Seq[String](
"hadoop-annotations-2.6.0-cdh5.7.1.jar"
, "hadoop-ant-2.6.0-cdh5.7.1.jar"
, "hadoop-ant-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-archive-logs-2.6.0-cdh5.7.1.jar"
, "hadoop-archives-2.6.0-cdh5.7.1.jar"
, "hadoop-auth-2.6.0-cdh5.7.1.jar"
, "hadoop-aws-2.6.0-cdh5.7.1.jar"
, "hadoop-azure-2.6.0-cdh5.7.1.jar"
, "hadoop-capacity-scheduler-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-common-2.6.0-cdh5.7.1.jar"
, "hadoop-core-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-datajoin-2.6.0-cdh5.7.1.jar"
, "hadoop-distcp-2.6.0-cdh5.7.1.jar"
, "hadoop-examples-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-examples.jar"
, "hadoop-extras-2.6.0-cdh5.7.1.jar"
, "hadoop-fairscheduler-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-gridmix-2.6.0-cdh5.7.1.jar"
, "hadoop-gridmix-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-hdfs-2.6.0-cdh5.7.1.jar"
, "hadoop-hdfs-nfs-2.6.0-cdh5.7.1.jar"
, "hadoop-kms-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-app-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-common-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-core-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-hs-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-hs-plugins-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-jobclient-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-nativetask-2.6.0-cdh5.7.1.jar"
, "hadoop-mapreduce-client-shuffle-2.6.0-cdh5.7.1.jar"
, "hadoop-nfs-2.6.0-cdh5.7.1.jar"
, "hadoop-openstack-2.6.0-cdh5.7.1.jar"
, "hadoop-rumen-2.6.0-cdh5.7.1.jar"
, "hadoop-sls-2.6.0-cdh5.7.1.jar"
, "hadoop-streaming-2.6.0-cdh5.7.1.jar"
, "hadoop-streaming-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-tools-2.6.0-mr1-cdh5.7.1.jar"
, "hadoop-yarn-api-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-applications-distributedshell-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-applications-unmanaged-am-launcher-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-client-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-common-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-registry-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-server-applicationhistoryservice-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-server-common-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-server-nodemanager-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-server-resourcemanager-2.6.0-cdh5.7.1.jar"
, "hadoop-yarn-server-web-proxy-2.6.0-cdh5.7.1.jar"
, "hbase-hadoop2-compat-1.2.0-cdh5.7.1.jar"
, "hbase-hadoop-compat-1.2.0-cdh5.7.1.jar")
final val sparkJars: Seq[String] = Seq[String](
"spark-1.6.0-cdh5.7.1-yarn-shuffle.jar",
"spark-assembly-1.6.0-cdh5.7.1-hadoop2.6.0-cdh5.7.1.jar",
"spark-avro_2.10-1.1.0-cdh5.7.1.jar",
"spark-bagel_2.10-1.6.0-cdh5.7.1.jar",
"spark-catalyst_2.10-1.6.0-cdh5.7.1.jar",
"spark-core_2.10-1.6.0-cdh5.7.1.jar",
"spark-examples-1.6.0-cdh5.7.1-hadoop2.6.0-cdh5.7.1.jar",
"spark-graphx_2.10-1.6.0-cdh5.7.1.jar",
"spark-hive_2.10-1.6.0-cdh5.7.1.jar",
"spark-launcher_2.10-1.6.0-cdh5.7.1.jar",
"spark-mllib_2.10-1.6.0-cdh5.7.1.jar",
"spark-network-common_2.10-1.6.0-cdh5.7.1.jar",
"spark-network-shuffle_2.10-1.6.0-cdh5.7.1.jar",
"spark-repl_2.10-1.6.0-cdh5.7.1.jar",
"spark-sql_2.10-1.6.0-cdh5.7.1.jar",
"spark-streaming-flume-sink_2.10-1.6.0-cdh5.7.1.jar",
"spark-streaming-flume_2.10-1.6.0-cdh5.7.1.jar",
"spark-streaming-kafka_2.10-1.6.0-cdh5.7.1.jar",
"spark-streaming_2.10-1.6.0-cdh5.7.1.jar",
"spark-unsafe_2.10-1.6.0-cdh5.7.1.jar",
"spark-yarn_2.10-1.6.0-cdh5.7.1.jar")
def getClassPath(jarNames: Seq[String], pathPrefix: String): String = {
jarNames.foldLeft("")((cp, name) => s"$cp:$pathPrefix/$name").drop(1)
}
Add these lines when creating a SparkConf:
.set("spark.driver.extraClassPath", getClassPath(sparkJars ++ hadoopJars, CDH_JAR_PATH))
.set("spark.executor.extraClassPath", getClassPath(sparkJars ++ hadoopJars, CDH_JAR_PATH))
.set("spark.yarn.jars", "hdfs://$YOUR_MACHINE/PATH_TO_JARS/*")
Your program should work now.