I'm trying to make a basic MLP example in keras. My input data has the shape train_data.shape = (2000,75,75)
and my testing data has the shape test_data.shape = (500,75,75)
. 2000
and 500
are the numbers of samples of training and test data (in other words, the shape of the data is (75,75)
, but there are 2000 and 500 pieces of training and testing data). The output should have two classes.
I'm unsure what value to use for the input_shape
parameter on the first layer of the network. Using the code from the mnist example in the keras repository, I have (updated):
from six.moves import cPickle
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.utils import np_utils
from keras.optimizers import RMSprop
# Globals
NUM_CLASSES = 2
NUM_EPOCHS = 10
BATCH_SIZE = 250
def loadData():
fData = open('data.pkl','rb')
fLabels = open('labels.pkl','rb')
data = cPickle.load(fData)
labels = cPickle.load(fLabels)
train_data = data[0:2000]
train_labels = labels[0:2000]
test_data = data[2000:]
test_labels = labels[2000:]
return (train_data, train_labels, test_data, test_labels)
# Load data and corresponding labels for model
train_data, train_labels, test_data, test_labels = loadData()
train_labels = np_utils.to_categorical(train_labels, NUM_CLASSES)
test_labels = np_utils.to_categorical(test_labels, NUM_CLASSES)
print(train_data.shape)
print(test_data.shape)
model = Sequential()
model.add(Dense(512, input_shape=(5625,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(2))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
history = model.fit(train_data, train_labels, validation_data=(test_data, test_labels),
batch_size=BATCH_SIZE, nb_epoch=NUM_EPOCHS,
verbose=1)
score = model.evaluate(test_data, test_labels, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
where 5625
is 75 * 75 (emulating the MNIST example). The error I get is:
Error when checking model input: expected dense_input_1 to have 2 dimensions, but got array with shape (2000, 75, 75)
Any ideas?
train_data
andtest_data
, but I don't see them used in the code so I'm not sure how they would contribute to the situation you find yourself in. Is there a full, minimal, code sample that generates this error? – Sailtest_data
andtrain_data
to match5625
, withX.reshape(-1,75*75)
– Mandymandych