I am doing a binary classification. May I know how to extract the real indexes of the misclassified or classified instances of the training data frame while doing K fold cross-validation? I found no answer to this question here.
I got the values in folds as described here:
skf=StratifiedKFold(n_splits=10,random_state=111,shuffle=False)
cv_results = cross_val_score(model, X_train, y_train, cv=skf, scoring='roc_auc')
fold_pred = [pred[j] for i, j in skf.split(X_train,y_train)]
fold_pred
Is there any method to get index of misclassified (or classified ones)? So the output is a dataframe that only has misclassified(or classified) instances while doing cross validation.
Desired output: Missclassified instances in the dataframe with real indices.
col1 col2 col3 col4 target
13 0 1 0 0 0
14 0 1 0 0 0
18 0 1 0 0 1
22 0 1 0 0 0
where input has 100 instances, 4 are misclassified (index number 13,14,18 and 22) while doing CV