Here is a snippet from the descriptor_extractor_matcher.cpp sample available from OpenCV:
if( !isWarpPerspective && ransacReprojThreshold >= 0 )
{
cout << "< Computing homography (RANSAC)..." << endl;
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs);
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs);
H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold );
cout << ">" << endl;
}
Mat drawImg;
if( !H12.empty() ) // filter outliers
{
vector<char> matchesMask( filteredMatches.size(), 0 );
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs);
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs);
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12);
double maxInlierDist = ransacReprojThreshold < 0 ? 3 : ransacReprojThreshold;
for( size_t i1 = 0; i1 < points1.size(); i1++ )
{
if( norm(points2[i1] - points1t.at<Point2f>((int)i1,0)) <= maxInlierDist ) // inlier
matchesMask[i1] = 1;
}
// draw inliers
drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask
#if DRAW_RICH_KEYPOINTS_MODE
, DrawMatchesFlags::DRAW_RICH_KEYPOINTS
#endif
);
#if DRAW_OUTLIERS_MODE
// draw outliers
for( size_t i1 = 0; i1 < matchesMask.size(); i1++ )
matchesMask[i1] = !matchesMask[i1];
drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg, CV_RGB(0, 0, 255), CV_RGB(255, 0, 0), matchesMask,
DrawMatchesFlags::DRAW_OVER_OUTIMG | DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
#endif
}
else
drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg );
The key lines for the filtering are performed here:
if( norm(points2[i1] - points1t.at<Point2f>((int)i1,0)) <= maxInlierDist ) // inlier
matchesMask[i1] = 1;
Which is measuring the L2-norm distance between the points (either 3 pixels if nothing was specified, or user-defined number of pixels reprojection error).
Hope that helps!