TokenClassificationChunkPipeline is throwing error: 'BatchEncoding' object is not an iterator
Asked Answered
C

1

1

Following this HuggingFace Anonymisation Tutorial. Using pytorch 2.0.0 and transformers-4.28.1 Running the code as it is, I get an error over the custom pipeline:

def anonymize(text):
    ents = pipe(text) # this errors out
    ...
TypeError: 'BatchEncoding' object is not an iterator

I realise it's a tokenizer issue,

class TokenClassificationChunkPipeline(TokenClassificationPipeline):
def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)

def preprocess(self, sentence, offset_mapping=None):
    model_inputs = self.tokenizer(
        sentence,
        return_tensors="pt",
        truncation=True,
        return_special_tokens_mask=True,
        return_offsets_mapping=True,
        return_overflowing_tokens=True,  # Return multiple chunks
        max_length=self.tokenizer.model_max_length,
        padding=True
    )
    if offset_mapping:
        model_inputs["offset_mapping"] = offset_mapping

    model_inputs["sentence"] = sentence

    return model_inputs

This model_inputs is a

<class 'transformers.tokenization_utils_base.BatchEncoding'>

How can I make an iterator BatchEncoding object? Else, is there another way? For full code, please visit the tutorial link above.

Coif answered 19/4, 2023 at 15:17 Comment(0)
F
2

Not sure why the pipeline was coded that way in the blogpost, but here's a working version:

import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers.pipelines.token_classification import TokenClassificationPipeline

model_checkpoint = "Davlan/bert-base-multilingual-cased-ner-hrl"

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)


class TokenClassificationChunkPipeline(TokenClassificationPipeline):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def preprocess(self, sentence, offset_mapping=None, **preprocess_params):
        tokenizer_params = preprocess_params.pop("tokenizer_params", {})
        truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False
        inputs = self.tokenizer(
            sentence,
            return_tensors="pt",
            truncation=True,
            return_special_tokens_mask=True,
            return_offsets_mapping=True,
            return_overflowing_tokens=True,  # Return multiple chunks
            max_length=self.tokenizer.model_max_length,
            padding=True
        )
        #inputs.pop("overflow_to_sample_mapping", None)
        num_chunks = len(inputs["input_ids"])

        for i in range(num_chunks):
            if self.framework == "tf":
                model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()}
            else:
                model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()}
            if offset_mapping is not None:
                model_inputs["offset_mapping"] = offset_mapping
            model_inputs["sentence"] = sentence if i == 0 else None
            model_inputs["is_last"] = i == num_chunks - 1
            yield model_inputs

    def _forward(self, model_inputs):
        # Forward
        special_tokens_mask = model_inputs.pop("special_tokens_mask")
        offset_mapping = model_inputs.pop("offset_mapping", None)
        sentence = model_inputs.pop("sentence")
        is_last = model_inputs.pop("is_last")

        overflow_to_sample_mapping = model_inputs.pop("overflow_to_sample_mapping")

        output = self.model(**model_inputs)
        logits = output["logits"] if isinstance(output, dict) else output[0]


        model_outputs = {
            "logits": logits,
            "special_tokens_mask": special_tokens_mask,
            "offset_mapping": offset_mapping,
            "sentence": sentence,
            "overflow_to_sample_mapping": overflow_to_sample_mapping,
            "is_last": is_last,
            **model_inputs,
        }

        # We reshape outputs to fit with the postprocess inputs
        model_outputs["input_ids"] = torch.reshape(model_outputs["input_ids"], (1, -1))
        model_outputs["token_type_ids"] = torch.reshape(model_outputs["token_type_ids"], (1, -1))
        model_outputs["attention_mask"] = torch.reshape(model_outputs["attention_mask"], (1, -1))
        model_outputs["special_tokens_mask"] = torch.reshape(model_outputs["special_tokens_mask"], (1, -1))
        model_outputs["offset_mapping"] = torch.reshape(model_outputs["offset_mapping"], (1, -1, 2))

        return model_outputs


pipe = TokenClassificationChunkPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple")

pipe("Bernard works at BNP Paribas in Paris.")

[out]:

[{'entity_group': 'PER',
  'score': 0.9994497,
  'word': 'Bernard',
  'start': 0,
  'end': 7},
 {'entity_group': 'ORG',
  'score': 0.9997708,
  'word': 'BNP Paribas',
  'start': 17,
  'end': 28},
 {'entity_group': 'LOC',
  'score': 0.99906,
  'word': 'Paris',
  'start': 32,
  'end': 37}]

For reference, take a look at how the preproces() and the _forward() functions are coded in the TokenClassificationPipeline class, https://github.com/huggingface/transformers/blob/main/src/transformers/pipelines/token_classification.py

The preprocess should return a generator, that's why the _forward is expecting a generator and complains TypeError: 'BatchEncoding' object is not an iterator.

Ferren answered 19/4, 2023 at 21:25 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.