My dataset shape is (91149, 12)
I used CNN to train my classifier in text classification tasks
I found Training Accuracy: 0.5923
and Testing Accuracy: 0.5780
My Class has 9 labels as below:
df['thematique'].value_counts()
Corporate 42399
Economie collaborative 13272
Innovation 11360
Filiale 5990
Richesses Humaines 4445
Relation sociétaire 4363
Communication 4141
Produits et services 2594
Sites Internet et applis 2585
The model structure:
model = Sequential()
embedding_layer = Embedding(vocab_size, 300, weights=[embedding_matrix], input_length=maxlen , trainable=False)
model.add(embedding_layer)
model.add(Conv1D(128, 7, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(9, activation='sigmoid'))
model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics= ['categorical_accuracy'])
My data for multilabel classification is imbalanced. I need to handle imbalanced data for multipabel classification using CNN in Keras.