I am starting to use Julia mainly because of its speed. Currently, I am solving a fixed point problem. Although the current version of my code runs fast I would like to know some methods to improve its speed.
First of all, let me summarize the algorithm.
- There is an initial seed called C0 that maps from the space (b,y) into an action space c, then we have C0(b,y)
- There is a formula that generates a rule Ct from C0.
- Then, using an additional restriction, I can obtain an updating of b [let's called it bt]. Thus,it generates a rule Ct(bt,y)
- I need to interpolate the previous rule to move from the grid bt into the original grid b. It gives me an update for C0 [let's called that C1]
- I will iterate until the distance between C1 and C0 is below a convergence threshold.
To implement it I created two structures:
struct Parm
lC::Array{Float64, 2} # Lower limit
uC::Array{Float64, 2} # Upper limit
γ::Float64 # CRRA coefficient
δ::Float64 # factor in the euler
γ1::Float64 #
r1::Float64 # inverse of the gross interest rate
yb1::Array{Float64, 2} # y - b(t+1)
P::Array{Float64, 2} # Transpose of transition matrix
end
mutable struct Upd1
pol::Array{Float64,2} # policy function
b::Array{Float64, 1} # exogenous grid for interpolation
dif::Float64 # updating difference
end
The first one is a set of parameters while the second one stores the decision rule C1. I also define some functions:
function eulerm(x::Upd1,p::Parm)
ct = p.δ *(x.pol.^(-p.γ)*p.P).^(-p.γ1); #Euler equation
bt = p.r1.*(ct .+ p.yb1); #Endeogenous grid for bonds
return ct,bt
end
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
@inbounds @simd for col in 1:size(bt,2)
F1 = LinearInterpolation(bt[:,col], ct[:,col],extrapolation_bc=Line());
polnew[:,col] = F1(x.b);
end
polnew[polnew .< p.lC] .= p.lC[polnew .< p.lC];
polnew[polnew .> p.uC] .= p.uC[polnew .> p.uC];
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
function updating!(x::Upd1,p::Parm)
ct, bt = eulerm(x,p); # endogeneous grid
x.pol, x.dif = interp0!(bt,ct,x,p);
end
function conver(x::Upd1,p::Parm)
while x.dif>1e-8
updating!(x,p);
end
end
The first formula implements steps 2 and 3. The third one makes the updating (last part of step 4), and the last one iterates until convergence (step 5).
The most important function is the second one. It makes the interpolation. While I was running the function @time
and @btime
I realized that the largest number of allocations are in the loop inside this function. I tried to reduce it by not defining polnew
and goes directly to x.pol
but in this case, the results are not correct since it only need two iterations to converge (I think that Julia is thinking that polold
is exactly the same than x.pol
and it is updating both at the same time).
Any advice is well received.
To anyone that wants to run it by themselves, I add the rest of the required code:
function rouwen(ρ::Float64, σ2::Float64, N::Int64)
if (N % 2 != 1)
return "N should be an odd number"
end
sigz = sqrt(σ2/(1-ρ^2));
zn = sigz*sqrt(N-1);
z = range(-zn,zn,N);
p = (1+ρ)/2;
q = p;
Rho = [p 1-p;1-q q];
for i = 3:N
zz = zeros(i-1,1);
Rho = p*[Rho zz; zz' 0] + (1-p)*[zz Rho; 0 zz'] + (1-q)*[zz' 0; Rho zz] + q *[0 zz'; zz Rho];
Rho[2:end-1,:] = Rho[2:end-1,:]/2;
end
return z,Rho;
end
#############################################################
# Parameters of the model
############################################################
lb = 0; ub = 1000; pivb = 0.25; nb = 500;
ρ = 0.988; σz = 0.0439; μz =-σz/2; nz = 7;
ϕ = 0.0; σe = 0.6376; μe =-σe/2; ne = 7;
β = 0.98; r = 1/400; γ = 1;
b = exp10.(range(start=log10(lb+pivb), stop=log10(ub+pivb), length=nb)) .- pivb;
#=========================================================
Algorithm
======================================================== =#
(z,Pz) = rouwen(ρ,σz, nz);
μZ = μz/(1-ρ);
z = z .+ μZ;
(ee,Pe) = rouwen(ϕ,σe,ne);
ee = ee .+ μe;
y = exp.(vec((z .+ ee')'));
P = kron(Pz,Pe);
R = 1 + r;
r1 = R^(-1);
γ1 = 1/γ;
δ = (β*R)^(-γ1);
m = R*b .+ y';
lC = max.(m .- ub,0);
uC = m .- lb;
by1 = b .- y';
# initial guess for C0
c0 = 0.1*(m);
# Set of parameters
pp = Parm(lC,uC,γ,δ,γ1,r1,by1,P');
# Container of results
up1 = Upd1(c0,b,1);
# Fixed point problem
conver(up1,pp)
UPDATE As it was reccomend, I made the following changes to the third function
function interp0!(bt::Array{Float64},ct::Array{Float64},x::Upd1, p::Parm)
polold = x.pol;
polnew = similar(x.pol);
@inbounds for col in 1:size(bt,2)
F1 = LinearInterpolation(@view(bt[:,col]), @view(ct[:,col]),extrapolation_bc=Line());
polnew[:,col] = F1(x.b);
end
for j in eachindex(polnew)
polnew[j] < p.lC[j] ? polnew[j] = p.lC[j] : nothing
polnew[j] > p.uC[j] ? polnew[j] = p.uC[j] : nothing
end
dif = maximum(abs.(polnew - polold));
return polnew,dif
end
This leads to an improvement in the speed (from ~1.5 to ~1.3 seconds). And a reduction in the number of allocations. Somethings that I noted were:
- Changing from
polnew[:,col] = F1(x.b)
topolnew[:,col] .= F1(x.b)
can reduce the total allocations but the time is slower, why is that? - How should I understand the difference between @time and @btime. For this case, I have:
up1 = Upd1(c0,b,1);
@time conver(up1,pp)
1.338042 seconds (385.72 k allocations: 1.157 GiB, 3.37% gc time)
up1 = Upd1(c0,b,1);
@btime conver(up1,pp)
4.200 ns (0 allocations: 0 bytes)
Just to be precise, in both cases, I run it several times and I choose representative numbers for each line. Does it mean that all the time is due allocations during the compilation?
views
can improve my code [although in my trials it doesn't look to be the case]. Regarding the snippets, it was how adding code appears while I was writing the question. So, I really don't know if this is new functionality. Thanks – Southsoutheastfor col in 1:size(bt,2)
loop? If so, I would think that it has nothint to do withpolnew
orx.pol
; it's almost definitely the interpolation. Just constructing theLinearInterpolation
may involve allocation, and almost certainly evaluating it will also. Is there an in-place version you could use, likeF1(@view(polnew[:,col]), x.b)
? – ScouringsDataInterpolations.jl
instead ofInterpolations.jl
. – ScouringsDataInterpolations.jl
because in the future I will need to do multiple dimensions interpolations. But thank in advance. – Southsoutheast