I am learning OpenACC (with PGI's compiler) and trying to optimize matrix multiplication example. The fastest implementation I came up so far is the following:
void matrix_mul(float *restrict r, float *a, float *b, int N, int accelerate){
#pragma acc data copyin (a[0: N * N ], b[0: N * N]) copyout (r [0: N * N ]) if(accelerate)
{
# pragma acc region if(accelerate)
{
# pragma acc loop independent vector(32)
for (int j = 0; j < N; j ++)
{
# pragma acc loop independent vector(32)
for (int i = 0; i < N ; i ++ )
{
float sum = 0;
for (int k = 0; k < N ; k ++ ) {
sum += a [ i + k*N ] * b [ k + j * N ];
}
r[i + j * N ] = sum ;
}
}
}
}
This results in thread blocks of size 32x32 threads and gives me the best performance so far. Here are the benchmarks:
Matrix multiplication (1500x1500):
GPU: Geforce GT650 M, 64-bit Linux
Data sz : 1500
Unaccelerated:
matrix_mul() time : 5873.255333 msec
Accelerated:
matrix_mul() time : 420.414700 msec
Data size : 1750 x 1750
matrix_mul() time : 876.271200 msec
Data size : 2000 x 2000
matrix_mul() time : 1147.783400 msec
Data size : 2250 x 2250
matrix_mul() time : 1863.458100 msec
Data size : 2500 x 2500
matrix_mul() time : 2516.493200 msec
Unfortunately I realized that the generated CUDA code is quite primitive (e.g. it does not even use shared memory) and hence cannot compete with hand-optimized CUDA program. As a reference implementation I took Arrayfire lib with the following results:
Arrayfire 1500 x 1500 matrix mul
CUDA toolkit 4.2, driver 295.59
GPU0 GeForce GT 650M, 2048 MB, Compute 3.0 (single,double)
Memory Usage: 1932 MB free (2048 MB total)
af: 0.03166 seconds
Arrayfire 1750 x 1750 matrix mul
af: 0.05042 seconds
Arrayfire 2000 x 2000 matrix mul
af: 0.07493 seconds
Arrayfire 2250 x 2250 matrix mul
af: 0.10786 seconds
Arrayfire 2500 x 2500 matrix mul
af: 0.14795 seconds
I wonder if there any suggestions how to get better performance from OpenACC ? Perhaps my choice of directives is not right ?