In CDECL arguments are pushed onto the stack in revers order, the caller clears the stack and result is returned via processor registry (later I will call it "register A"). In STDCALL there is one difference, the caller doeasn't clear the stack, the calle do.
You are asking which one is faster. No one. You should use native calling convention as long as you can. Change convention only if there is no way out, when using external libraries that requires certain convention to be used.
Besides, there are other conventions that compiler may choose as default one i.e. Visual C++ compiler uses FASTCALL which is theoretically faster because of more extensive usage of processor registers.
Usually you must give a proper calling convention signature to callback functions passed to some external library i.e. callback to qsort
from C library must be CDECL (if the compiler by default uses other convention then we must mark the callback as CDECL) or various WinAPI callbacks must be STDCALL (whole WinAPI is STDCALL).
Other usual case may be when you are storing pointers to some external functions i.e. to create a pointer to WinAPI function its type definition must be marked with STDCALL.
And below is an example showing how does the compiler do it:
/* 1. calling function in C++ */
i = Function(x, y, z);
/* 2. function body in C++ */
int Function(int a, int b, int c) { return a + b + c; }
CDECL:
/* 1. calling CDECL 'Function' in pseudo-assembler (similar to what the compiler outputs) */
push on the stack a copy of 'z', then a copy of 'y', then a copy of 'x'
call (jump to function body, after function is finished it will jump back here, the address where to jump back is in registers)
move contents of register A to 'i' variable
pop all from the stack that we have pushed (copy of x, y and z)
/* 2. CDECL 'Function' body in pseudo-assembler */
/* Now copies of 'a', 'b' and 'c' variables are pushed onto the stack */
copy 'a' (from stack) to register A
copy 'b' (from stack) to register B
add A and B, store result in A
copy 'c' (from stack) to register B
add A and B, store result in A
jump back to caller code (a, b and c still on the stack, the result is in register A)
STDCALL:
/* 1. calling STDCALL in pseudo-assembler (similar to what the compiler outputs) */
push on the stack a copy of 'z', then a copy of 'y', then a copy of 'x'
call
move contents of register A to 'i' variable
/* 2. STDCALL 'Function' body in pseaudo-assembler */
pop 'a' from stack to register A
pop 'b' from stack to register B
add A and B, store result in A
pop 'c' from stack to register B
add A and B, store result in A
jump back to caller code (a, b and c are no more on the stack, result in register A)