I think this implementation has O(log(N)) instantiation depth; kudos to Xeo for the O(log(N)) indices trick (modified to use std::size_t
instead of unsigned
).
Edit: I realized there's a different, simpler and probably faster (compilation time) solution to get the nth type of a tuple.
// from https://stackoverflow.com/a/13073076
// indices trick in O(log(N)) instantiations, by Xeo
// using aliases for cleaner syntax
template<class T> using Invoke = typename T::type;
template<std::size_t...> struct seq{ using type = seq; };
template<class S1, class S2> struct concat;
template<std::size_t... I1, std::size_t... I2>
struct concat<seq<I1...>, seq<I2...>>
: seq<I1..., (sizeof...(I1)+I2)...>{};
template<class S1, class S2>
using Concat = Invoke<concat<S1, S2>>;
template<std::size_t N> struct gen_seq;
template<std::size_t N> using GenSeq = Invoke<gen_seq<N>>;
template<std::size_t N>
struct gen_seq : Concat<GenSeq<N/2>, GenSeq<N - N/2>>{};
template<> struct gen_seq<0> : seq<>{};
template<> struct gen_seq<1> : seq<0>{};
Implementation of / similar to std::tuple_element
:
namespace detail
{
template<std::size_t>
struct Any
{
Any(...) {}
};
template<typename T>
struct wrapper { using type = T; };
template<std::size_t... Is>
struct get_nth_helper
{
template<typename T>
static auto deduce(Any<Is>..., wrapper<T>, ...) -> wrapper<T>;
};
template<std::size_t... Is, typename... Ts>
auto deduce_seq(seq<Is...>, wrapper<Ts>... pp)
-> decltype( get_nth_helper<Is...>::deduce(pp...) );
}
#include <tuple>
template<std::size_t n, class Tuple>
struct tuple_element;
template<std::size_t n, class... Ts>
struct tuple_element<n, std::tuple<Ts...>>
{
using wrapped_type = decltype( detail::deduce_seq(gen_seq<n>{},
detail::wrapper<Ts>()...) );
using type = typename wrapped_type::type;
};
Usage example:
#include <typeinfo>
#include <iostream>
int main()
{
std::tuple<int, double, bool, char> t;
tuple_element<1, decltype(t)>::type x;
std::cout << typeid(x).name() << std::endl;
}
Thanks to @Barry for pointing out an issue in an earlier version of this answer with function/array types, and providing a fix.
Original version:
(Note: This version is simplified and doesn't add cv-qualifiers.)
#include <tuple>
namespace detail
{
template < std::size_t Index, class Arg >
struct s_get_one
{
// declare a function that links an Index with an Arg type
friend Arg get(s_get_one, std::integral_constant<std::size_t, Index>);
};
template < typename... Bases >
struct s_get : Bases... {};
}
template < std::size_t I, class T >
struct tuple_element;
template < std::size_t I, class... Args >
struct tuple_element < I, std::tuple<Args...> >
{
template<class T>
struct wrapper { using type = T; };
// deduce indices from seq helper
template < std::size_t... Is >
static auto helper(seq<Is...>)
-> detail::s_get< detail::s_get_one<Is, wrapper<Args>>... >;
// generate indices in O(log(N)) and use name lookup to find the type
using IC = std::integral_constant<std::size_t, I>;
using wrapped_type = decltype( get(helper(gen_seq<sizeof...(Args)>{}), IC{}) );
using type = typename wrapped_type::type;
};
constexpr
won't work, sincepack[0]
can have a different type frompack[1]
. Whatever you use as an index must be a constant expression. And there is no way to loop over some number of things with an index that is a constant expression. – Travancoretuple_element
, and aget
that, while still technically linear in that the compiler has to run a linear overload algorithm, at least has a constant number of template instantiations. – Renayrenckens