I'm trying to use Gaussian quadrature to approximate the integral of a function. (More info here: http://austingwalters.com/gaussian-quadrature/). The first function is on the interval [-1,1]. The second function is generalized to [a,b] by change of variable. The problem is that I keep getting the error "'numpy.ndarray' object is not callable". I assume (please correct me if I'm wrong) this means I've tried to call the arrays w and x as functions, but I'm not sure how to fix this.
This is the code
from __future__ import division
from pylab import *
from scipy.special.orthogonal import p_roots
def gauss1(f,n):
[x,w] = p_roots(n+1)
f = (1-x**2)**0.5
for i in range(n+1):
G = sum(w[i]*f(x[i]))
return G
def gauss(f,a,b,n):
[x,w] = p_roots(n+1)
f = (1-x**2)**0.5
for i in range(n+1):
G = 0.5*(b-a)*sum(w[i]*f(0.5*(b-a)*x[i]+ 0.5*(b+a)))
return G
These are the respective error messages
gauss1(f,4)
Traceback (most recent call last):
File "<ipython-input-82-43c8ecf7334a>", line 1, in <module>
gauss1(f,4)
File "C:/Users/Me/Desktop/hw8.py", line 16, in gauss1
G = sum(w[i]*f(x[i]))
TypeError: 'numpy.ndarray' object is not callable
gauss(f,0,1,4)
Traceback (most recent call last):
File "<ipython-input-83-5603d51e9206>", line 1, in <module>
gauss(f,0,1,4)
File "C:/Users/Me/Desktop/hw8.py", line 23, in gauss
G = 0.5*(b-a)*sum(w[i]*f(0.5*(b-a)*x[i]+ 0.5*(b+a)))
TypeError: 'numpy.ndarray' object is not callable
def test(f,n): [x,w] = p_roots(n+1) for i in range(n+1): f[i] = (1-x[i]**2)**0.5 G = sum(w[i]*f([i])) return G
Then I get the error:File "C:/Users/Me/Desktop/hw8.py", line 29, in test f[i] = (1-x[i]**2)**0.5: TypeError: 'builtin_function_or_method' object does not support item assignment:
(sorry about the lack of line breaks....) – Ursulaursulette