I would like to implement the Power Method for determining the dominant eigenvalue and eigenvector of a matrix in MATLAB.
Here's what I wrote so far:
%function to implement power method to compute dominant
%eigenvalue/eigenevctor
function [m,y_final]=power_method(A,x);
m=0;
n=length(x);
y_final=zeros(n,1);
y_final=x;
tol=1e-3;
while(1)
mold=m;
y_final=A*y_final;
m=max(y_final);
y_final=y_final/m;
if (m-mold)<tol
break;
end
end
end
With the above code, here is a numerical example:
A=[1 1 -2;-1 2 1; 0 1 -1]
A =
1 1 -2
-1 2 1
0 1 -1
>> x=[1 1 1];
>> x=x';
>> [m,y_final]=power_method(A,x);
>> A*x
ans =
0
2
0
When comparing with the eigenvalues and eigenvectors of the above matrix in MATLAB, I did:
[V,D]=eig(A)
V =
0.3015 -0.8018 0.7071
0.9045 -0.5345 0.0000
0.3015 -0.2673 0.7071
D =
2.0000 0 0
0 1.0000 0
0 0 -1.0000
The eigenvalue coincides, but the eigenvector should be approaching [1/3 1 1/3]
. Here, I get:
y_final
y_final =
0.5000
1.0000
0.5000
Is this acceptable to see this inaccuracy, or am I making some mistake?