I have a TcpClient class on a client and server setup on my local machine. I have been using the Network stream to facilitate communications back and forth between the 2 successfully.
Moving forward I am trying to implement compression in the communications. I've tried GZipStream and DeflateStream. I have decided to focus on DeflateStream. However, the connection is hanging without reading data now.
I have tried 4 different implementations that have all failed due to the Server side not reading the incoming data and the connection timing out. I will focus on the two implementations I have tried most recently and to my knowledge should work.
The client is broken down to this request: There are 2 separate implementations, one with streamwriter one without.
textToSend = ENQUIRY + START_OF_TEXT + textToSend + END_OF_TEXT;
// Send XML Request
byte[] request = Encoding.UTF8.GetBytes(textToSend);
using (DeflateStream streamOut = new DeflateStream(netStream, CompressionMode.Compress, true))
{
//using (StreamWriter sw = new StreamWriter(streamOut))
//{
// sw.Write(textToSend);
// sw.Flush();
streamOut.Write(request, 0, request.Length);
streamOut.Flush();
//}
}
The server receives the request and I do
1.) a quick read of the first character then if it matches what I expect
2.) I continue reading the rest.
The first read works correctly and if I want to read the whole stream it is all there. However I only want to read the first character and evaluate it then continue in my LongReadStream method.
When I try to continue reading the stream there is no data to be read. I am guessing that the data is being lost during the first read but I'm not sure how to determine that. All this code works correctly when I use the normal NetworkStream.
Here is the server side code.
private void ProcessRequests()
{
// This method reads the first byte of data correctly and if I want to
// I can read the entire request here. However, I want to leave
// all that data until I want it below in my LongReadStream method.
if (QuickReadStream(_netStream, receiveBuffer, 1) != ENQUIRY)
{
// Invalid Request, close connection
clientIsFinished = true;
_client.Client.Disconnect(true);
_client.Close();
return;
}
while (!clientIsFinished) // Keep reading text until client sends END_TRANSMISSION
{
// Inside this method there is no data and the connection times out waiting for data
receiveText = LongReadStream(_netStream, _client);
// Continue talking with Client...
}
_client.Client.Shutdown(SocketShutdown.Both);
_client.Client.Disconnect(true);
_client.Close();
}
private string LongReadStream(NetworkStream stream, TcpClient c)
{
bool foundEOT = false;
StringBuilder sbFullText = new StringBuilder();
int readLength, totalBytesRead = 0;
string currentReadText;
c.ReceiveBufferSize = DEFAULT_BUFFERSIZE * 100;
byte[] bigReadBuffer = new byte[c.ReceiveBufferSize];
while (!foundEOT)
{
using (var decompressStream = new DeflateStream(stream, CompressionMode.Decompress, true))
{
//using (StreamReader sr = new StreamReader(decompressStream))
//{
//currentReadText = sr.ReadToEnd();
//}
readLength = decompressStream.Read(bigReadBuffer, 0, c.ReceiveBufferSize);
currentReadText = Encoding.UTF8.GetString(bigReadBuffer, 0, readLength);
totalBytesRead += readLength;
}
sbFullText.Append(currentReadText);
if (currentReadText.EndsWith(END_OF_TEXT))
{
foundEOT = true;
sbFullText.Length = sbFullText.Length - 1;
}
else
{
sbFullText.Append(currentReadText);
}
// Validate data code removed for simplicity
}
c.ReceiveBufferSize = DEFAULT_BUFFERSIZE;
c.ReceiveTimeout = timeOutMilliseconds;
return sbFullText.ToString();
}
private string QuickReadStream(NetworkStream stream, byte[] receiveBuffer, int receiveBufferSize)
{
using (DeflateStream zippy = new DeflateStream(stream, CompressionMode.Decompress, true))
{
int bytesIn = zippy.Read(receiveBuffer, 0, receiveBufferSize);
var returnValue = Encoding.UTF8.GetString(receiveBuffer, 0, bytesIn);
return returnValue;
}
}
EDIT NetworkStream has an underlying Socket property which has an Available property. MSDN says this about the available property.
Gets the amount of data that has been received from the network and is available to be read.
Before the call below Available is 77. After reading 1 byte the value is 0.
//receiveBufferSize = 1
int bytesIn = zippy.Read(receiveBuffer, 0, receiveBufferSize);
There doesn't seem to be any documentation about DeflateStream consuming the whole underlying stream and I don't know why it would do such a thing when there are explicit calls to be made to read specific numbers of bytes.
Does anyone know why this happens or if there is a way to preserve the underlying data for a future read? Based on this 'feature' and a previous article that I read stating a DeflateStream must be closed to finish sending (flush won't work) it seems DeflateStreams may be limited in their use for networking especially if one wishes to counter DOS attacks by testing incoming data before accepting a full stream.