This is a C++11 solution for the more general problem type of applying
a function or functor F
, taking N
type T
parameters and returning type Ret
, to the N
arguments
at successive positions of some input iterator.
This gains several flexibilities over a solution parameterized by some container-of-T
of the arguments:-
You can extract the arguments from an arbitrary N
-sized range within a sequence.
The sequence need not be a container-of-T
- though it must be a sequence of something convertible to T
.
You can extract the arguments either last-to-first (as you do), or first-to-last,
from the standard container types or any that support forward and reverse iterators.
You may even apply F
to arguments consumed directly from some input stream, without
intermediate extraction.
And of course you can change your mind about the type of sequence in which
to deliver arguments without having to change the functional-application solution.
Interface
template<typename Func, typename InIter, typename Stop = std::nullptr_t>
typename function_traits<typename std::decay<Func>::type>::return_type
invoke(Func && f, InIter it, Stop stop = Stop());
You can use this like:
auto result = invoke(func,iter);
to apply func
to the arguments at N
successive positions of the iterator
iter
.
That way, you get no range-checking that N
arguments are legitimately accessible
to your program at those positions. The range-checking code that you will spot
in the implementation will compile to nothing and if you trespass out of bounds
there will be UB.
If you want range checking you can instead code:
auto result = invoke(func,iter,end);
where end
is an iterator of the same type as iter
delimiting the end of the
available range in the usual manner. In this case an std::out_of_range
will
be thrown if N
exceeds the size of the range.
Implementation
#include <type_traits>
#include <functional>
#include <string>
template<typename T>
struct function_traits;
template <typename Ret, typename ArgT, typename... ArgRest>
struct function_traits<Ret(*)(ArgT, ArgRest...)>
{
static constexpr std::size_t n_args = 1 + sizeof...(ArgRest);
using first_arg_type = ArgT;
using return_type = Ret;
};
template <typename Ret, typename ArgT, typename... ArgRest>
struct function_traits<std::function<Ret(ArgT, ArgRest...)>>
{
static constexpr std::size_t n_args = 1 + sizeof...(ArgRest);
using first_arg_type = ArgT;
using return_type = Ret;
};
namespace detail {
template<typename Left, typename Right>
typename std::enable_if<!std::is_same<Left,Right>::value>::type
range_check(Left, Right, std::string const &){}
template<typename Left, typename Right>
typename std::enable_if<std::is_same<Left,Right>::value>::type
range_check(Left start, Right end, std::string const & gripe) {
if (start == end) {
throw std::out_of_range(gripe);
}
}
template<
std::size_t N, typename Func, typename InIter, typename Stop,
typename ...Ts
>
typename std::enable_if<
N == function_traits<typename std::decay<Func>::type>::n_args,
typename function_traits<typename std::decay<Func>::type>::return_type
>::type
invoke(Func && f, InIter, Stop, Ts...args)
{
return f(args...);
}
template<
std::size_t N, typename Func, typename InIter, typename Stop,
typename ...Ts
>
typename std::enable_if<
N != function_traits<typename std::decay<Func>::type>::n_args,
typename function_traits<typename std::decay<Func>::type>::return_type
>::type
invoke(Func && f, InIter it, Stop stop, Ts...args)
{
range_check(it,stop,
"Function takes more arguments than are available "
"in `" + std::string(__PRETTY_FUNCTION__) + '`');
using arg_type = typename
function_traits<typename std::decay<Func>::type>::first_arg_type;
auto arg = static_cast<arg_type>(*it);
return invoke<N + 1>(std::forward<Func>(f),++it,stop,args...,arg);
}
} // namespace detail
template<typename Func, typename InIter, typename Stop = std::nullptr_t>
typename function_traits<typename std::decay<Func>::type>::return_type
invoke(Func && f, InIter it, Stop stop = Stop())
{
return detail::invoke<0>(std::forward<Func>(f),it,stop);
}
The two specializations of function_traits<T>
provided will restrict
compilation to functional types T
that take at least one argument, which should
suffice for likely applications. Should you need to support
invocation on types taking 0 arguments then you can augment them with:
template <typename Ret>
struct function_traits<Ret(*)()>
{
static constexpr std::size_t n_args = 0;
using return_type = Ret;
};
template <typename Ret>
struct function_traits<std::function<Ret()>>
{
static constexpr std::size_t n_args = 0;
using return_type = Ret;
};
The specialization for free functions function_traits<Ret(*)(ArgT, ArgRest...)>
,
is strictly a redundant convenience, since they too could be wrapped in std::function
objects, as you're obliged to do for anything fancier than a free function.
Demo
For a program that exercises the features discussed you can append:
#include <iostream>
#include <list>
#include <vector>
#include <deque>
#include <sstream>
#include <iterator>
struct num
{
double d;
explicit operator double() const {
return d;
}
};
double add4(double d0, double d1, double d2, double d3)
{
std::cout << d0 << '+' << d1 << '+' << d2 << '+' << d3 << "\n=";
return d0 + d1 + d2 + d3;
}
int multiply2(int i0, int i1)
{
std::cout << i0 << '*' << i1 << "\n=";
return i0 * i1;
}
struct S
{
int subtract3(int i0, int i1, int i2) const
{
std::cout << i0 << '-' << i1 << '-' << i2 << "\n=";
return i0 - i1 - i2;
}
int compute(std::list<int> const & li) const {
std::function<int(int,int,int)> bind = [this](int i0, int i1, int i2) {
return this->subtract3(i0,i1,i2);
};
return invoke(bind,li.begin());
}
};
int main()
{
std::vector<double> vd{1.0,2.0,3.0,4.0};
std::vector<double> vdshort{9.0};
std::list<int> li{5,6,7,8};
std::deque<num> dn{num{10.0},num{20.0},num{30.0},num{40.0}};
std::istringstream iss{std::string{"10 9 8"}};
std::istream_iterator<int> it(iss);
std::cout << invoke(add4,vd.rbegin()) << '\n';
std::cout << invoke(multiply2,li.begin()) << '\n';
std::cout << invoke(add4,dn.rbegin()) << '\n';
std::cout << invoke(multiply2,++it) << '\n';
S s;
std::cout << '=' << s.compute(li) << '\n';
try {
std::cout << invoke(add4,vdshort.begin(),vdshort.end()) << '\n';
} catch(std::out_of_range const & gripe) {
std::cout << "Oops :(\n" << gripe.what() << '\n';
}
return 0;
}
The case of:
S s;
std::cout << '=' << s.compute(li) << '\n';
is particularly pertinent to your particular problem, since here we call
S::compute(std::list<int> const & li)
to apply another non-static method
of S
to arguments delivered in the list li
. See in the implementation
of S::compute
how the use of a lambda can conveniently bind both the
calling S
object and S::compute
into an std::function
we can
pass to invoke
.
Live demo
compute()
does not know the size ofpars
, this pretty much rules out metaprogramming. P.S.: unless you enjoy copyinglist
s all the time for no good reason, whatsoever,compute()
should take its parameter by reference. – Sitcompute(x1, x2, .., xn)
– Juradocompute(x1, ...)
is based on size ofpars
, not vice-versa. – Freshmancompute
? – Crifasicompute(x1, ....)
is already known. So at least from a human perspective, the number of parameters could be known. The compiler machinery also knows it. The question would be then how to know in metaprograming terms how many parameters receivecompute(x1, ....)
– Juradocompute()
– Jurado