How do I print out the contents of a vector?
Asked Answered
A

33

418

How do I print out the contents of a std::vector to the screen?


A solution that implements the following operator<< would be nice as well:

template<container C, class T, String delim = ", ", String open = "[", String close = "]">
std::ostream & operator<<(std::ostream & o, const C<T> & x)
{
  // ... What can I write here?
}

Here is what I have so far, without a separate function:

#include <iostream>
#include <fstream>
#include <string>
#include <cmath>
#include <vector>
#include <sstream>
#include <cstdio>
using namespace std;

int main()
{
    ifstream file("maze.txt");
    if (file) {
        vector<char> vec(istreambuf_iterator<char>(file), (istreambuf_iterator<char>()));
        vector<char> path;
        int x = 17;
        char entrance = vec.at(16);
        char firstsquare = vec.at(x);
        if (entrance == 'S') { 
            path.push_back(entrance); 
        }
        for (x = 17; isalpha(firstsquare); x++) {
            path.push_back(firstsquare);
        }
        for (int i = 0; i < path.size(); i++) {
            cout << path[i] << " ";
        }
        cout << endl;
        return 0;
    }
}
Anchovy answered 25/5, 2012 at 7:13 Comment(3)
for information, the only way I found to do it "succintly" was a hack --> adding overloads of operator<< within the std namespace (so that they are picked up by ADL) and forwarding the calls to a generic print range method... I am very interested in the results of this discussion, thanks for asking :)Filibeg
if you have heterogeneous types, where you mix stl containers and tuples. use boost.fusion io along with pretty print. cout << vector<tuple<int,array<int,3>>>(...) << endl;Prinz
a reminder: endl is almost never what people think it is; it should be removed from this example! you should virtually never use endl unless you're doing special character graphics stuff on the terminal. use "\n" instead. I wonder if there is a way to get the message out to all C++ answers.Scandalize
D
533

If you have a C++11 compiler, I would suggest using a range-based for-loop (see below); or else use an iterator. But you have several options, all of which I will explain in what follows.

Range-based for-loop (C++11)

In C++11 (and later) you can use the new range-based for-loop, which looks like this:

std::vector<char> path;
// ...
for (char i: path)
    std::cout << i << ' ';

The type char in the for-loop statement should be the type of the elements of the vector path and not an integer indexing type. In other words, since path is of type std::vector<char>, the type that should appear in the range-based for-loop is char. However, you will likely often see the explicit type replaced with the auto placeholder type:

for (auto i: path)
    std::cout << i << ' ';

Regardless of whether you use the explicit type or the auto keyword, the object i has a value that is a copy of the actual item in the path object. Thus, all changes to i in the loop are not preserved in path itself:

std::vector<char> path{'a', 'b', 'c'};

for (auto i: path) {
    i = '_'; // 'i' is a copy of the element in 'path', so although
             // we can change 'i' here perfectly fine, the elements
             // of 'path' have not changed
    std::cout << i << ' '; // will print: "_ _ _"
}

for (auto i: path) {
    std::cout << i << ' '; // will print: "a b c"
}

If you would like to proscribe being able to change this copied value of i in the for-loop as well, you can force the type of i to be const char like this:

for (const auto i: path) {
    i = '_'; // this will now produce a compiler error
    std::cout << i << ' ';
}

If you would like to modify the items in path so that those changes persist in path outside of the for-loop, then you can use a reference like so:

for (auto& i: path) {
    i = '_'; // changes to 'i' will now also change the
             // element in 'path' itself to that value
    std::cout << i << ' ';
}

and even if you don't want to modify path, if the copying of objects is expensive you should use a const reference instead of copying by value:

for (const auto& i: path)
    std::cout << i << ' ';

Iterators

Before C++11 the canonical solution would have been to use an iterator, and that is still perfectly acceptable. They are used as follows:

std::vector<char> path;
// ...
for (std::vector<char>::const_iterator i = path.begin(); i != path.end(); ++i)
    std::cout << *i << ' ';

If you want to modify the vector's contents in the for-loop, then use iterator rather than const_iterator.

Supplement: typedef / type alias (C++11) / auto (C++11)

This is not another solution, but a supplement to the above iterator solution. If you are using the C++11 standard (or later), then you can use the auto keyword to help the readability:

for (auto i = path.begin(); i != path.end(); ++i)
    std::cout << *i << ' ';

Here the type of i will be non-const (i.e., the compiler will use std::vector<char>::iterator as the type of i). This is because we called the begin method, so the compiler deduced the type for i from that. If we call the cbegin method instead ("c" for const), then i will be a std::vector<char>::const_iterator:

for (auto i = path.cbegin(); i != path.cend(); ++i) {
    *i = '_'; // will produce a compiler error
    std::cout << *i << ' ';
}

If you're not comfortable with the compiler deducing types, then in C++11 you can use a type alias to avoid having to type the vector out all the time (a good habit to get into):

using Path = std::vector<char>; // C++11 onwards only
Path path; // 'Path' is an alias for std::vector<char>
// ...
for (Path::const_iterator i = path.begin(); i != path.end(); ++i)
    std::cout << *i << ' ';

If you do not have access to a C++11 compiler (or don't like the type alias syntax for whatever reason), then you can use the more traditional typedef:

typedef std::vector<char> Path; // 'Path' now a synonym for std::vector<char>
Path path;
// ...
for (Path::const_iterator i = path.begin(); i != path.end(); ++i)
    std::cout << *i << ' ';

Side note:

At this point, you may or may not have come across iterators before, and you may or may not have heard that iterators are what you are "supposed" to use, and may be wondering why. The answer is not easy to appreciate, but, in brief, the idea is that iterators are an abstraction that shield you from the details of the operation.

It is convenient to have an object (the iterator) that does the operation you want (like sequential access) rather than you writing the details yourself (the "details" being the code that does the actual accessing of the elements of the vector). You should notice that in the for-loop you are only ever asking the iterator to return you a value (*i, where i is the iterator) -- you are never interacting with path directly itself. The logic goes like this: you create an iterator and give it the object you want to loop over (iterator i = path.begin()), and then all you do is ask the iterator to get the next value for you (*i); you never had to worry exactly how the iterator did that -- that's its business, not yours.

OK, but what's the point? Well, imagine if getting a value wasn't simple. What if it involves a bit of work? You don't need to worry, because the iterator has handled that for you -- it sorts out the details, all you need to do is ask it for a value. Additionally, what if you change the container from std::vector to something else? In theory, your code doesn't change even if the details of how accessing elements in the new container does: remember, the iterator sorts all the details out for you behind the scenes, so you don't need to change your code at all -- you just ask the iterator for the next value in the container, same as before.

So, whilst this may seem like confusing overkill for looping through a vector, there are good reasons behind the concept of iterators and so you might as well get used to using them.

Indexing

You can also use a integer type to index through the elements of the vector in the for-loop explicitly:

for (int i=0; i<path.size(); ++i)
    std::cout << path[i] << ' ';

If you are going to do this, it's better to use the container's member types, if they are available and appropriate. std::vector has a member type called size_type for this job: it is the type returned by the size method.

typedef std::vector<char> Path; // 'Path' now a synonym for std::vector<char>
for (Path::size_type i=0; i<path.size(); ++i)
    std::cout << path[i] << ' ';

Why not use this in preference to the iterator solution? For simple cases, you can do that, but using an iterator brings several advantages, which I have briefly outlined above. As such, my advice would be to avoid this method unless you have good reasons for it.

std::copy (C++11)

See Joshua's answer. You can use the STL algorithm std::copy to copy the vector contents onto the output stream. I don't have anything to add, except to say that I don't use this method; but there's no good reason for that besides habit.

std::ranges::copy (C++20)

For completeness, C++20 introduced ranges, which can act on the whole range of a std::vector, so no need for begin and end:

#include <iterator> // for std::ostream_iterator
#include <algorithm> // for std::ranges::copy depending on lib support

std::vector<char> path;
// ...
std::ranges::copy(path, std::ostream_iterator<char>(std::cout, " "));

Unless you have a recent compiler (on GCC apparently at least version 10.1), likely you will not have ranges support even if you might have some C++20 features available.

Overload std::ostream::operator<<

See also Chris's answer below. This is more a complement to the other answers since you will still need to implement one of the solutions above in the overloading, but the benefit is much cleaner code. This is how you could use the std::ranges::copy solution above:

#include <iostream>
#include <vector>
#include <iterator> // for std::ostream_iterator
#include <algorithm> // for std::ranges::copy depending on lib support

using Path = std::vector<char>; // type alias for std::vector<char>

std::ostream& operator<< (std::ostream& out, const Path& v) {
    if ( !v.empty() ) {
        out << '[';
        std::ranges::copy(v, std::ostream_iterator<char>(out, ", "));
        out << "\b\b]"; // use two ANSI backspace characters '\b' to overwrite final ", "
    }
    return out;
}

int main() {
    Path path{'/', 'f', 'o', 'o'};

    // will output: "path: [/, f, o, o]"
    std::cout << "path: " << path << std::endl;

    return 0;
}

Now you can pass your Path objects to your output stream just like fundamental types. Using any of the other solutions above should also be equally straightforward.

Conclusion

Any of the solutions presented here will work. It's up to you (and context or your coding standards) on which one is the "best". Anything more detailed than this is probably best left for another question where the pros/cons can be properly evaluated, but as always user preference will always play a part: none of the solutions presented are objectively wrong, but some will look nicer to each coder.

Addendum

This is an expanded solution of an earlier one I posted. Since that post kept getting attention, I decided to expand on it and refer to the other excellent solutions posted here, at least those that I have personally used in the past at least once. I would, however, encourage the reader to look at the answers below because there are probably good suggestions that I have forgotten, or do not know, about.

Dyslogistic answered 25/5, 2012 at 17:25 Comment(10)
If you're looping from 0 through vector::size() and the vector is not modified within the loop there is no need to use at() and incur the extra bounds checking overhead. That said, I would go with an iterator as you suggest.Tigon
@Ed: yeah, there's no point in using at if nothing in the loop modifies the vector, but I thought I'd mention it just in case the vector is modified in the loop (unrecommended as that might be) and because it never gets a mention and it might be useful to, at least, know of it.Dyslogistic
The range-based for loop could be rewritten to use references, which may be important in case of large sub-objects, as follows: for (auto const &i: path) std::cout << i << ' ';Blondie
@underscore_d: thanks. I've cleaned up that section and I hope it's both more complete and a little clearer now.Dyslogistic
"overload operator<<" is not a good solution; at least one operand of overloaded operator should be a class defined by your program, because of argument-dependent lookupDrops
How about using for (auto i = path.cbegin(); i != path.cend(); ++i) for a C++ 11 solution? Would that result in auto being a const iterator?Moonlighting
@jens: I believe so; I will check that and add that in if so. Thanks.Dyslogistic
How to print a vector? @Zorawar: Hold my beerThi
Almost all suggestions here print a gratuitous space after the last element. Only the overloaded operator<< avoids this by enclosing the output with [ and ] - which one wonders why the author did not suggest elsewhere.Gina
@einpoklum: idleness. But the more serious answer is: because it would add code complexity that would detract from the intent of the question, which was not "how to print vector elements without an unnecessary separator at the end". Even in the overloaded stream operator answer, there could still be a trailing space -- the intent of the backspace characters are to overwrite the final comma with a square bracket, not to "delete" the final space. But even here I am not being careful, because if there is a stream flush before the backspace characters, even this will not do as I intended.Dyslogistic
V
256

A much easier way to do this is with the standard copy algorithm:

#include <iostream>
#include <algorithm> // for copy
#include <iterator> // for ostream_iterator
#include <vector>

int main() {
    /* Set up vector to hold chars a-z */
    std::vector<char> path;
    for (int ch = 'a'; ch <= 'z'; ++ch)
        path.push_back(ch);

    /* Print path vector to console */
    std::copy(path.begin(), path.end(), std::ostream_iterator<char>(std::cout, " "));

    return 0;
}

The ostream_iterator is what's called an iterator adaptor. It is templatized over the type to print out to the stream (in this case, char). cout (aka console output) is the stream we want to write to, and the space character (" ") is what we want printed between each element stored in the vector.

This standard algorithm is powerful and so are many others. The power and flexibility the standard library gives you are what make it so great. Just imagine: you can print a vector to the console with just one line of code. You don't have to deal with special cases with the separator character. You don't need to worry about for-loops. The standard library does it all for you.

Viguerie answered 4/7, 2012 at 21:30 Comment(7)
what if my vector was of type vector<pair<int, struct node>>. How do i use the above method to print this vector?Breakup
The delimiter string is written after every element, not between, i.e., also after the last. That may require dealing with special cases if you only want it between, i.e., as a separator.Ratfink
@Breakup you can declare an operator<< function for your specific pair<>.Masochism
Added an answer showing a similar approach but taking into accout @Quigi:s comment above, regarding the extra trailing separator.Pomace
@Masochism Is there no other way?Puca
std::ostreambuf_iterator is specialized for characters, likely performs better.Persistence
It works fine with char type vector, but how about your own data type. F.e. I made data type Card: it has value, which is integer, and suite, which is string. This approach doesnt work with my example.Gumma
C
85

In C++23 you'll be able to use std::print to print most standard types including std::vector. For example:

import std;

int main() {
  auto v = std::vector{1, 2, 3};
  std::print("{}", v);
}

prints

[1, 2, 3]

to stdout.

In the meantime you can use the {fmt} library, std::print is based on:

#include <vector>
#include <fmt/ranges.h>

int main() {
  auto v = std::vector<int>{1, 2, 3};
  fmt::print("{}", v);
}

godbolt: https://godbolt.org/z/xEdz15

I wouldn't recommend overloading operator<< for types you don't control such as standard containers.

Disclaimer: I'm the author of {fmt}, std::format and std::print.

Crasis answered 20/3, 2019 at 22:12 Comment(5)
What about std::map? I could not find anything in the documentationPedology
Formatting of all containers is supported.Crasis
Can you please give me a starting point? I am having a hard time finding the usage of fmtlib with fmtlib print std::map as the search term. I apologize if this counts as a noob question or RTFM-like :)Pedology
Here's an example with map: godbolt.org/z/EG7aoE. As you can see there is no difference in usage.Crasis
Oh my! This is amazing godbolt.org/z/h7qxbaPedology
I
84

This solution was inspired by Marcelo's solution, with a few changes:

#include <iostream>
#include <iterator>
#include <type_traits>
#include <vector>
#include <algorithm>

// This works similar to ostream_iterator, but doesn't print a delimiter after the final item
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar> >
class pretty_ostream_iterator : public std::iterator<std::output_iterator_tag, void, void, void, void>
{
public:
    typedef TChar char_type;
    typedef TCharTraits traits_type;
    typedef std::basic_ostream<TChar, TCharTraits> ostream_type;

    pretty_ostream_iterator(ostream_type &stream, const char_type *delim = NULL)
        : _stream(&stream), _delim(delim), _insertDelim(false)
    {
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator=(const T &value)
    {
        if( _delim != NULL )
        {
            // Don't insert a delimiter if this is the first time the function is called
            if( _insertDelim )
                (*_stream) << _delim;
            else
                _insertDelim = true;
        }
        (*_stream) << value;
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator*()
    {
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator++()
    {
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator++(int)
    {
        return *this;
    }
private:
    ostream_type *_stream;
    const char_type *_delim;
    bool _insertDelim;
};

#if _MSC_VER >= 1400

// Declare pretty_ostream_iterator as checked
template<typename T, typename TChar, typename TCharTraits>
struct std::_Is_checked_helper<pretty_ostream_iterator<T, TChar, TCharTraits> > : public std::tr1::true_type
{
};

#endif // _MSC_VER >= 1400

namespace std
{
    // Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
    // These aren't necessary if you do actually include the headers.
    template<typename T, typename TAllocator> class vector;
    template<typename T, typename TAllocator> class list;
    template<typename T, typename TTraits, typename TAllocator> class set;
    template<typename TKey, typename TValue, typename TTraits, typename TAllocator> class map;
}

// Basic is_container template; specialize to derive from std::true_type for all desired container types
template<typename T> struct is_container : public std::false_type { };

// Mark vector as a container
template<typename T, typename TAllocator> struct is_container<std::vector<T, TAllocator> > : public std::true_type { };

// Mark list as a container
template<typename T, typename TAllocator> struct is_container<std::list<T, TAllocator> > : public std::true_type { };

// Mark set as a container
template<typename T, typename TTraits, typename TAllocator> struct is_container<std::set<T, TTraits, TAllocator> > : public std::true_type { };

// Mark map as a container
template<typename TKey, typename TValue, typename TTraits, typename TAllocator> struct is_container<std::map<TKey, TValue, TTraits, TAllocator> > : public std::true_type { };

// Holds the delimiter values for a specific character type
template<typename TChar>
struct delimiters_values
{
    typedef TChar char_type;
    const TChar *prefix;
    const TChar *delimiter;
    const TChar *postfix;
};

// Defines the delimiter values for a specific container and character type
template<typename T, typename TChar>
struct delimiters
{
    static const delimiters_values<TChar> values; 
};

// Default delimiters
template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "{ ", ", ", " }" };
template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"{ ", L", ", L" }" };

// Delimiters for set
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters<std::set<T, TTraits, TAllocator>, char>::values = { "[ ", ", ", " ]" };
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters<std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"[ ", L", ", L" ]" };

// Delimiters for pair
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
template<typename T1, typename T2> const delimiters_values<char> delimiters<std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters<std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };

// Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar> >
struct print_container_helper
{
    typedef TChar char_type;
    typedef TDelimiters delimiters_type;
    typedef std::basic_ostream<TChar, TCharTraits>& ostream_type;

    print_container_helper(const T &container)
        : _container(&container)
    {
    }

    void operator()(ostream_type &stream) const
    {
        if( delimiters_type::values.prefix != NULL )
            stream << delimiters_type::values.prefix;
        std::copy(_container->begin(), _container->end(), pretty_ostream_iterator<typename T::value_type, TChar, TCharTraits>(stream, delimiters_type::values.delimiter));
        if( delimiters_type::values.postfix != NULL )
            stream << delimiters_type::values.postfix;
    }
private:
    const T *_container;
};

// Prints a print_container_helper to the specified stream.
template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const print_container_helper<T, TChar, TDelimiters> &helper)
{
    helper(stream);
    return stream;
}

// Prints a container to the stream using default delimiters
template<typename T, typename TChar, typename TCharTraits>
typename std::enable_if<is_container<T>::value, std::basic_ostream<TChar, TCharTraits>&>::type
    operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const T &container)
{
    stream << print_container_helper<T, TChar, TCharTraits>(container);
    return stream;
}

// Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
template<typename T1, typename T2, typename TChar, typename TCharTraits>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const std::pair<T1, T2> &value)
{
    if( delimiters<std::pair<T1, T2>, TChar>::values.prefix != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.prefix;

    stream << value.first;

    if( delimiters<std::pair<T1, T2>, TChar>::values.delimiter != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.delimiter;

    stream << value.second;

    if( delimiters<std::pair<T1, T2>, TChar>::values.postfix != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.postfix;
    return stream;    
}

// Used by the sample below to generate some values
struct fibonacci
{
    fibonacci() : f1(0), f2(1) { }
    int operator()()
    {
        int r = f1 + f2;
        f1 = f2;
        f2 = r;
        return f1;
    }
private:
    int f1;
    int f2;
};

int main()
{
    std::vector<int> v;
    std::generate_n(std::back_inserter(v), 10, fibonacci());

    std::cout << v << std::endl;

    // Example of using pretty_ostream_iterator directly
    std::generate_n(pretty_ostream_iterator<int>(std::cout, ";"), 20, fibonacci());
    std::cout << std::endl;
}

Like Marcelo's version, it uses an is_container type trait that must be specialized for all containers that are to be supported. It may be possible to use a trait to check for value_type, const_iterator, begin()/end(), but I'm not sure I'd recommend that since it might match things that match those criteria but aren't actually containers, like std::basic_string. Also like Marcelo's version, it uses templates that can be specialized to specify the delimiters to use.

The major difference is that I've built my version around a pretty_ostream_iterator, which works similar to the std::ostream_iterator but doesn't print a delimiter after the last item. Formatting the containers is done by the print_container_helper, which can be used directly to print containers without an is_container trait, or to specify a different delimiters type.

I've also defined is_container and delimiters so it will work for containers with non-standard predicates or allocators, and for both char and wchar_t. The operator<< function itself is also defined to work with both char and wchar_t streams.

Finally, I've used std::enable_if, which is available as part of C++0x, and works in Visual C++ 2010 and g++ 4.3 (needs the -std=c++0x flag) and later. This way there is no dependency on Boost.

Interpreter answered 5/6, 2011 at 4:7 Comment(11)
If I'm reading this right, in order to have a pair print as <i, j> in one function and as [i j] in another, you have to define a whole new type, with a handful of static members in order to pass that type to print_container_helper? That seems overly complex. Why not go with an actual object, with fields you can set on a case by case basis, and the specializations simply providing different default values?Resonate
See it this way: If there are a bunch of delimiters that you like personally, you can make a couple of classes with static members once and for all and then just use those. Of course you're right that using print_container_helper isn't as elegant as just the operator<<. You can always change the source, of course, or just add explicit specializations for your favourite container, e.g. for pair<int, int> and for pair<double, string>. Ultimately it's a matter of weighing power against convenience. Suggestions for improvement welcome!Gail
... and to follow up on that, if you already need situational printing of the same data type in different formattings, you'll probably have to write at least one small wrapper anyway. This isn't a highly-configurable formatting library, but rather a zero-effort sensible-default library that magically lets you print containers without thinking... (But if you want more global flexibility, we could probably add some #macros to make the defaults easy to manipulate.)Gail
The real issue is that, although I could easily modify print_container_helper to use parameters for the custom delimiters, there's not really any way to specify delimiters for an inner container (or pair) other than specializing the delimiters template. Achieving that would be very complicated.Interpreter
I'm almost managing to achieve a convenient custom delimiter solution using type erasure. If you already have a delimiter class MyDels, then I can say std::cout << CustomPrinter<MyDels>(x);. What I cannot do at the moment is say std::cout << CustomDelims<"{", ":", "}">(x);, because you cannot have const char * template arguments. The decision to make the delimiters compile-time constant puts some restrictions on the ease of use there, but I think it's well worth it.Gail
(But of course you're right that it's not so easy to nest custom delimiters. I think simply specializing the desired types should be sufficiently easy in that scenario, and again, if you need super-customized printing, you'll probably write your own loops anyway. This is just a convenience library for quick inspection.)Gail
The delimiter interface I was visualizing involved a templated factory class that provides defaults. Users specialize the factory however they like. The helper function takes an actual delimiter object with a default parameter that just queries that factory. Then, you can write a basic manipulator to provide a custom set of delimiters. So you end up with cout << v; or cout << delims("(", "-", ")") << v; or cout << pretty_container_helper(v, delims("(", "-", ")");. This way, the delimiter object itself does not have to be a template, and everything remains relatively simple.Resonate
@Kerrek: ideone.com/aTHOQ <-- An example of what I mean. Based on the code in this answer, not the one in the question. So no namespaces et cetera. I haven't implemented a manipulator, because properly implementing manipulators is overly complicated for something I hacked together as a proof of concept.Resonate
@Dennis: Thanks for the code. As far as I can tell, what you do is make the delimiters object-scope constants rather than compile-time (i.e. class-static) constants, is that right? So the difference is that users could provide the delimiters at runtime. But the problem of controlling nested output remains, i.e. I can't thoroughly customize the printing of a nested container on a case-by-case basis. (I can add your object-based delimiters to the code if you like, though. But check my top post for the latest version.)Gail
@Kerrek: I already have utility functions I use for this task, so don't change your code on my account. If you don't like the design then that's your call :-)Resonate
It turned out that the accepted answer did not compile for me using gcc5.3 in a few corner cases. E.g., in a namespace with two unrelated structs but having operator<<() of their own led to errors. HOWEVER, the code from the public GitHub now linked at the beginning of this question worked flawlessly. Please bump this comment to eventually save others hours of their life trying to find the cause of the error in the accepted answer.Housemother
S
79

In C++11 you can now use a range-based for loop:

for (auto const& c : path)
    std::cout << c << ' ';
Serriform answered 10/12, 2013 at 23:25 Comment(4)
This works great only if the size of the vector is not changed in the body of the range for loop.Pozzy
@BrianP. Yup. Printing the elements of a container does not modify the range of the container.Serriform
What's preferable here – c as a value copy or as a const reference to avoid the copying the element?Ouster
@Ouster It depends on the content of the vector. For example for a vector of chars, chances are that passing by constant reference is actually more costly than by value. But here we are talking of super micro optimizations.Serriform
G
53

I think the best way to do this is to just overload operator<< by adding this function to your program:

#include <vector>
using std::vector;
#include <iostream>
using std::ostream;

template<typename T>
ostream& operator<< (ostream& out, const vector<T>& v) {
    out << "{";
    size_t last = v.size() - 1;
    for(size_t i = 0; i < v.size(); ++i) {
        out << v[i];
        if (i != last) 
            out << ", ";
    }
    out << "}";
    return out;
}

Then you can use the << operator on any possible vector, assuming its elements also have ostream& operator<< defined:

vector<string>  s = {"first", "second", "third"};
vector<bool>    b = {true, false, true, false, false};
vector<int>     i = {1, 2, 3, 4};
cout << s << endl;
cout << b << endl;
cout << i << endl;

Outputs:

{first, second, third}
{1, 0, 1, 0, 0}
{1, 2, 3, 4}
Group answered 30/4, 2014 at 20:46 Comment(6)
Storing v.size() - 1 as an int is a possible loss of precision. I fixed this in an accepted peer reviewed edit (stackoverflow.com/revisions/23397700/5), but it was thereafter edited again restoring the possible loss of precision. I guess it doesn't matter too much in practice since vectors aren't usually that big.Mother
Not storing it as a variable decreases the readability of the code, which is a part of your edit I disagreed with. I've changed the type of last to size_t.Group
size_t last = v.size() - 1; looks redundant, you can use if (i) out << ", "; condition before out << v[i]; linkTwicetold
This operator is not found by ADL, since it is not in the namespace of any of its arguments. So it will be hidden by any other namespace's operator<<. ExampleDrops
If you're going to do this, why test if (i != last) each time in the loop? Instead, if the container isn't empty then (a) send the first element, and then (b) loop-send the remaining elements, printing the separator first (as a prefix). No inner loop test (apart from the loop condition itself) is required. Only one out-of-loop test is required.Celibate
@Celibate Feel free to propose an edit. If it is shorter, then I agree it may be more elegant code. However, from a computational perspective, it doesn't change the O(n) time complexity.Group
P
22

This has been edited a few times, and we have decided to call the main class that wraps a collection RangePrinter.

This should work automatically with any collection once you have written the one-time operator<< overload, except that you will need a special one for maps to print the pair, and may want to customize the delimiter there.

You could also have a special "print" function to use on the item instead of just outputting it directly, a bit like STL algorithms allow you to pass in custom predicates. With map you would use it this way, with a custom printer for the std::pair.

Your "default" printer would just output it to the stream.

Ok, let's work on a custom printer. I will change my outer class to RangePrinter. So we have 2 iterators and some delimiters but have not customized how to print the actual items.

struct DefaultPrinter
{
   template< typename T >
   std::ostream & operator()( std::ostream& os, const T& t ) const
   {
     return os << t;
   }

   // overload for std::pair
   template< typename K, typename V >
   std::ostream & operator()( std::ostream & os, std::pair<K,V> const& p)
   {
      return os << p.first << '=' << p.second;
   }
};

// some prototypes
template< typename FwdIter, typename Printer > class RangePrinter;

template< typename FwdIter, typename Printer > 
  std::ostream & operator<<( std::ostream &, 
        RangePrinter<FwdIter, Printer> const& );

template< typename FwdIter, typename Printer=DefaultPrinter >
class RangePrinter
{
    FwdIter begin;
    FwdIter end;
    std::string delim;
    std::string open;
    std::string close;
    Printer printer;

    friend std::ostream& operator<< <>( std::ostream&, 
         RangePrinter<FwdIter,Printer> const& );

public:
    RangePrinter( FwdIter b, FwdIter e, Printer p,
         std::string const& d, std::string const & o, std::string const& c )
      : begin( b ), end( e ), printer( p ), open( o ), close( c )
    {
    } 

     // with no "printer" variable
    RangePrinter( FwdIter b, FwdIter e,
         std::string const& d, std::string const & o, std::string const& c )
      : begin( b ), end( e ), open( o ), close( c )
    {
    } 

};


template<typename FwdIter, typename Printer>
std::ostream& operator<<( std::ostream& os, 
          RangePrinter<FwdIter, Printer> const& range )
{
    const Printer & printer = range.printer;

    os << range.open;
    FwdIter begin = range.begin, end = range.end;

    // print the first item
    if (begin == end) 
    { 
      return os << range.close; 
    }

    printer( os, *begin );

    // print the rest with delim as a prefix
    for( ++begin; begin != end; ++begin )
    {
       os << range.delim;
       printer( os, *begin );
    }
    return os << range.close;
}

Now by default it will work for maps as long as the key and value types are both printable and you can put in your own special item printer for when they are not (as you can with any other type), or if you do not want "=" as the delimiter.

I am moving the free-function to create these to the end now:

A free-function (iterator version) would look like something this and you could even have defaults:

template<typename Collection>
RangePrinter<typename Collection::const_iterator> rangePrinter
    ( const Collection& coll, const char * delim=",", 
       const char * open="[", const char * close="]")
{
   return RangePrinter< typename Collection::const_iterator >
     ( coll.begin(), coll.end(), delim, open, close );
}

You could then use it for std::set by

 std::cout << outputFormatter( mySet );

You can also write free-function version that take a custom printer and ones that take two iterators. In any case they will resolve the template parameters for you, and you will be able to pass them through as temporaries.

Pericles answered 31/1, 2011 at 12:12 Comment(18)
I see. This is similar to Marcelo Cantos's idea, isn't it? I shall try to turn this into a working example, thank you!Gail
I find this solution much cleaner than Marcelo's, and it offers the same flexibility. I like the aspect that one has to explicitly wrap the output into a function call. To be really cool, you could add support for outputting a range of iterators directly, so that I can do std::cout << outputFormatter(beginOfRange, endOfRange);.Backfill
@CashCow: there is one issue with this solution, it does not seem to work with recursive collections (ie collections of collections). std::pair is the most basic example of "inner collection".Filibeg
I'm liking this answer very much, since it has no dependencies and does not need to know about the containers it supports. Can we figure out if it can handle std::maps easily, and if it works for collections of collections? I'm tempted to accept this one as an answer, though. I hope Marcelo doesn't mind, his solution also works.Gail
@Matthieu M. It depends how you print the inner collection. If you just use os << open << *iter << close then you will have a problem with it, but if you allow your user to pass in a custom printer as I have suggested you can then print anything you like.Pericles
Oh - can we wrap this all up into one single universal printer function? For primitive types it just does "<<", and for collections it calls itself recursively on the elements?Gail
I have started you off on your custom printer. Of course you can use functions to create item printers. You could add partial specialization too on vector but then you'd have to go on the path of specializing each one separately. Must be better to have a collection printer for that, and you can even overload operator() on RangePrinter to fit the type of being an inner printer.Pericles
@Kerrek. If Marcelo and I were pair-programming we'd probably come up with the perfect solution here. You would use a traits type to do that. boost may have something better though than Marcelo's IsContainer though that will look at the traits of the type to see if it acts as a container.Pericles
@Matthieu I saw at least one of your corrections. And yes, it's a more specialist overload, but has the effect that it if you pass in a std::pair it is a closer match so the compiler will pick it over the general one, so a bit like partial-specialisation.Pericles
If you want something totally recursive you will most likely need to adopt the printer and use clever SFINAE traits techniques (if the item has begin() and end() methods it is a collection... if it's a shared pointer print what it points to... etc.) and this assumes you want to use the same delimiters/openers/closers at each level, and you will need to decide how to key-value too. If there is a big interest in attempting this we could make it a community wiki? How nested exactly are your collections?Pericles
Here's my sample program which fails to compile: pastebin.com/Vx6hAWuL I suppose in real life you wouldn't usually have more than a vector of vectors or so, so maybe that kind of nesting isn't as important as support for vectors of pairs and support for maps.Gail
You have made a few modifications and I do not know offhand what does not compile. I will test it tomorrow. I am not sure if the first template declaration requires the default parameter too. Where exactly is it failing to compile? What error do you see?Pericles
I am so sorry, I foobar'd that when I updated my local code with your new version. You're right, now it's working better. I've updated the example: pastebin.com/ewMHBMnB Still got some issues with vector<vector<...>>, though...Gail
After noticing that the RangePrinter worked suprisingly for std::strings, I added support for arrays, too, like Marcelo did: pastebin.com/ZhBc0XhR This lets you say std::cout << outputFormatter("Hello World") << std::endl;Gail
One more question: To specialise the delimiters, say for std::set, do I have to rewrite the entire definition of RangePrinter? Can this be avoided somehow?Gail
The problem is my Printer has one interface and RangePrinter a different one. RangePrinter is an object intended to print a single range, and you specify how you print what is inside. We probably want CollectionPrinter which has operator() and uses RangePrinter underneath.Pericles
I see the issue: we should decouple the delimiter spec and what is getting printed, i.e. what it is a collection of. It would then be possible when you have vector< vector<T> > to pass the delimiter spec to each item of the outer vector for printing the inner vectors.Pericles
This would be quite a big re-edit, but I see it now as follows: Delims should be a struct on its own with the 3 strings. We need a printer functor (RangeItemPrinter) that takes the delims as a parameter and keeps state knowing whether it is printing the first object, and we need another class to actually print the items (independent of them being in a range), that being Printer=DefaultPrinter here. RangePrinter is just a wrapper for all these classes and gets streamed with operator<<. You can create a Printer for objects to print the internals of vector< vector > from existing classes.Pericles
K
22

How about for_each + lambda expression:

#include <vector>
#include <algorithm>
// ...
std::vector<char> vec;
// ...
std::for_each(
              vec.cbegin(),
              vec.cend(),
              [] (const char c) {std::cout << c << " ";} 
              );
// ...

Of course, a range-based for is the most elegant solution for this concrete task, but this one gives many other possibilities as well.

Explanation

The for_each algorithm takes an input range and a callable object, calling this object on every element of the range. An input range is defined by two iterators. A callable object can be a function, a pointer to function, an object of a class which overloads () operator or as in this case, a lambda expression. The parameter for this expression matches the type of the elements from vector.

The beauty of this implementation is the power you get from lambda expressions - you can use this approach for a lot more things than just printing the vector.

Kurth answered 14/10, 2014 at 14:48 Comment(0)
P
15

Here is a working library, presented as a complete working program, that I just hacked together:

#include <set>
#include <vector>
#include <iostream>

#include <boost/utility/enable_if.hpp>

// Default delimiters
template <class C> struct Delims { static const char *delim[3]; };
template <class C> const char *Delims<C>::delim[3]={"[", ", ", "]"};
// Special delimiters for sets.                                                                                                             
template <typename T> struct Delims< std::set<T> > { static const char *delim[3]; };
template <typename T> const char *Delims< std::set<T> >::delim[3]={"{", ", ", "}"};

template <class C> struct IsContainer { enum { value = false }; };
template <typename T> struct IsContainer< std::vector<T> > { enum { value = true }; };
template <typename T> struct IsContainer< std::set<T>    > { enum { value = true }; };

template <class C>
typename boost::enable_if<IsContainer<C>, std::ostream&>::type
operator<<(std::ostream & o, const C & x)
{
  o << Delims<C>::delim[0];
  for (typename C::const_iterator i = x.begin(); i != x.end(); ++i)
    {
      if (i != x.begin()) o << Delims<C>::delim[1];
      o << *i;
    }
  o << Delims<C>::delim[2];
  return o;
}

template <typename T> struct IsChar { enum { value = false }; };
template <> struct IsChar<char> { enum { value = true }; };

template <typename T, int N>
typename boost::disable_if<IsChar<T>, std::ostream&>::type
operator<<(std::ostream & o, const T (&x)[N])
{
  o << "[";
  for (int i = 0; i != N; ++i)
    {
      if (i) o << ",";
      o << x[i];
    }
  o << "]";
  return o;
}

int main()
{
  std::vector<int> i;
  i.push_back(23);
  i.push_back(34);

  std::set<std::string> j;
  j.insert("hello");
  j.insert("world");

  double k[] = { 1.1, 2.2, M_PI, -1.0/123.0 };

  std::cout << i << "\n" << j << "\n" << k << "\n";
}

It currently only works with vector and set, but can be made to work with most containers, just by expanding on the IsContainer specializations. I haven't thought much about whether this code is minimal, but I can't immediately think of anything I could strip out as redundant.

EDIT: Just for kicks, I included a version that handles arrays. I had to exclude char arrays to avoid further ambiguities; it might still get into trouble with wchar_t[].

Pomiculture answered 31/1, 2011 at 11:51 Comment(8)
@Nawaz: As I said, this is just the beginning of a solution. You could support std::map<> either by specialising the operator, or by defining an operator<< for std::pair<>.Pomiculture
However, +1 for using Delims class template!Founder
@MC: Oh good. This is looking very promising! (By the way, you need return type "std::ostream &", I had forgotten that initially.)Gail
Hmm, I get "ambiguous overload" when trying this on an std::vector<int> and std::set<std::string>...Gail
Yep, I'm currently figuring out how to prevent the ambiguities, which are caused by the fact that the operator<< template matches just about anything.Pomiculture
Phew, that was an ordeal! I tossed in the towel on figuring out SFINAE (it beats me every time, dammit) and just used boost::enable_if, which hides all the SFINAE goo behind a simple template.Pomiculture
Alright, that works -- so, what are the requirements? Boost/utility.hpp, and each admissible container has to be added to the IsContainer specialisations? Well, it's certainly a neat solution that can be packaged into a single file somewhere. Thank you!Gail
I've just added code to handle T[N]. I could probably merge the two operators into one, but that might actually increase the total code size for precious little gain.Pomiculture
S
13

The code proved to be handy on several occasions now and I feel the expense to get into customization as usage is quite low. Thus, I decided to release it under MIT license and provide a GitHub repository where the header and a small example file can be downloaded.

http://djmuw.github.io/prettycc

0. Preface and wording

A 'decoration' in terms of this answer is a set of prefix-string, delimiter-string, and a postfix-string. Where the prefix string is inserted into a stream before and the postfix string after the values of a container (see 2. Target containers). The delimiter string is inserted between the values of the respective container.

Note: Actually, this answer does not address the question to 100% since the decoration is not strictly compiled time constant because runtime checks are required to check whether a custom decoration has been applied to the current stream. Nevertheless, I think it has some decent features.

Note2: May have minor bugs since it is not yet well tested.

1. General idea/usage

Zero additional code required for usage

It is to be kept as easy as

#include <vector>
#include "pretty.h"

int main()
{
  std::cout << std::vector<int>{1,2,3,4,5}; // prints 1, 2, 3, 4, 5
  return 0;
}

Easy customization ...

... with respect to a specific stream object

#include <vector>
#include "pretty.h"

int main()
{
  // set decoration for std::vector<int> for cout object
  std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
  std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
  return 0;
}

or with respect to all streams:

#include <vector>
#include "pretty.h"

// set decoration for std::vector<int> for all ostream objects
PRETTY_DEFAULT_DECORATION(std::vector<int>, "{", ", ", "}")

int main()
{
  std::cout << std::vector<int>{1,2,3,4,5}; // prints {1, 2, 3, 4, 5}
  std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
  std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
  return 0;
}

Rough description

  • The code includes a class template providing a default decoration for any type
  • which can be specialized to change the default decoration for (a) certain type(s) and it is
  • using the private storage provided by ios_base using xalloc/pword in order to save a pointer to a pretty::decor object specifically decorating a certain type on a certain stream.

If no pretty::decor<T> object for this stream has been set up explicitly pretty::defaulted<T, charT, chartraitT>::decoration() is called to obtain the default decoration for the given type. The class pretty::defaulted is to be specialized to customize default decorations.

2. Target objects / containers

Target objects obj for the 'pretty decoration' of this code are objects having either

  • overloads std::begin and std::end defined (includes C-Style arrays),
  • having begin(obj) and end(obj) available via ADL,
  • are of type std::tuple
  • or of type std::pair.

The code includes a trait for identification of classes with range features (begin/end). (There's no check included, whether begin(obj) == end(obj) is a valid expression, though.)

The code provides operator<<s in the global namespace that only apply to classes not having a more specialized version of operator<< available. Therefore, for example std::string is not printed using the operator in this code although having a valid begin/end pair.

3. Utilization and customization

Decorations can be imposed separately for every type (except different tuples) and stream (not stream type!). (I.e. a std::vector<int> can have different decorations for different stream objects.)

A) Default decoration

The default prefix is "" (nothing) as is the default postfix, while the default delimiter is ", " (comma+space).

B) Customized default decoration of a type by specializing the pretty::defaulted class template

The struct defaulted has a static member function decoration() returning a decor object which includes the default values for the given type.

Example using an array:

Customize default array printing:

namespace pretty
{
  template<class T, std::size_t N>
  struct defaulted<T[N]>
  {
    static decor<T[N]> decoration()
    {
      return{ { "(" }, { ":" }, { ")" } };
    }
  };
}

Print an arry array:

float e[5] = { 3.4f, 4.3f, 5.2f, 1.1f, 22.2f };
std::cout << e << '\n'; // prints (3.4:4.3:5.2:1.1:22.2)

Using the PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) macro for char streams

The macro expands to

namespace pretty { 
  template< __VA_ARGS__ >
  struct defaulted< TYPE > {
    static decor< TYPE > decoration() {
      return { PREFIX, DELIM, POSTFIX };
    } 
  }; 
} 

enabling the above partial specialization to be rewritten to

PRETTY_DEFAULT_DECORATION(T[N], "", ";", "", class T, std::size_t N)

or inserting a full specialization like

PRETTY_DEFAULT_DECORATION(std::vector<int>, "(", ", ", ")")

Another macro for wchar_t streams is included: PRETTY_DEFAULT_WDECORATION.

C) Impose decoration on streams

The function pretty::decoration is used to impose a decoration on a certain stream. There are overloads taking either - one string argument being the delimiter (adopting prefix and postfix from the defaulted class) - or three string arguments assembling the complete decoration

Complete decoration for given type and stream

float e[3] = { 3.4f, 4.3f, 5.2f };
std::stringstream u;
// add { ; } decoration to u
u << pretty::decoration<float[3]>("{", "; ", "}");

// use { ; } decoration
u << e << '\n'; // prints {3.4; 4.3; 5.2}

// uses decoration returned by defaulted<float[3]>::decoration()
std::cout << e; // prints 3.4, 4.3, 5.2

Customization of delimiter for given stream

PRETTY_DEFAULT_DECORATION(float[3], "{{{", ",", "}}}")

std::stringstream v;
v << e; // prints {{{3.4,4.3,5.2}}}

v << pretty::decoration<float[3]>(":");
v << e; // prints {{{3.4:4.3:5.2}}}

v << pretty::decoration<float[3]>("((", "=", "))");
v << e; // prints ((3.4=4.3=5.2))

4. Special handling of std::tuple

Instead of allowing a specialization for every possible tuple type, this code applies any decoration available for std::tuple<void*> to all kind of std::tuple<...>s.

5. Remove custom decoration from the stream

To go back to the defaulted decoration for a given type use pretty::clear function template on the stream s.

s << pretty::clear<std::vector<int>>();

5. Further examples

Printing "matrix-like" with newline delimiter

std::vector<std::vector<int>> m{ {1,2,3}, {4,5,6}, {7,8,9} };
std::cout << pretty::decoration<std::vector<std::vector<int>>>("\n");
std::cout << m;

Prints

1, 2, 3
4, 5, 6
7, 8, 9

See it on ideone/KKUebZ

6. Code

#ifndef pretty_print_0x57547_sa4884X_0_1_h_guard_
#define pretty_print_0x57547_sa4884X_0_1_h_guard_

#include <string>
#include <iostream>
#include <type_traits>
#include <iterator>
#include <utility>

#define PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
    namespace pretty { template< __VA_ARGS__ >\
    struct defaulted< TYPE > {\
    static decor< TYPE > decoration(){\
      return { PREFIX, DELIM, POSTFIX };\
    } /*decoration*/ }; /*defaulted*/} /*pretty*/

#define PRETTY_DEFAULT_WDECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
    namespace pretty { template< __VA_ARGS__ >\
    struct defaulted< TYPE, wchar_t, std::char_traits<wchar_t> > {\
    static decor< TYPE, wchar_t, std::char_traits<wchar_t> > decoration(){\
      return { PREFIX, DELIM, POSTFIX };\
    } /*decoration*/ }; /*defaulted*/} /*pretty*/

namespace pretty
{

  namespace detail
  {
    // drag in begin and end overloads
    using std::begin;
    using std::end;
    // helper template
    template <int I> using _ol = std::integral_constant<int, I>*;
    // SFINAE check whether T is a range with begin/end
    template<class T>
    class is_range
    {
      // helper function declarations using expression sfinae
      template <class U, _ol<0> = nullptr>
      static std::false_type b(...);
      template <class U, _ol<1> = nullptr>
      static auto b(U &v) -> decltype(begin(v), std::true_type());
      template <class U, _ol<0> = nullptr>
      static std::false_type e(...);
      template <class U, _ol<1> = nullptr>
      static auto e(U &v) -> decltype(end(v), std::true_type());
      // return types
      using b_return = decltype(b<T>(std::declval<T&>()));
      using e_return = decltype(e<T>(std::declval<T&>()));
    public:
      static const bool value = b_return::value && e_return::value;
    };
  }

  // holder class for data
  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  struct decor
  {
    static const int xindex;
    std::basic_string<CharT, TraitT> prefix, delimiter, postfix;
    decor(std::basic_string<CharT, TraitT> const & pre = "",
      std::basic_string<CharT, TraitT> const & delim = "",
      std::basic_string<CharT, TraitT> const & post = "")
      : prefix(pre), delimiter(delim), postfix(post) {}
  };

  template<class T, class charT, class traits>
  int const decor<T, charT, traits>::xindex = std::ios_base::xalloc();

  namespace detail
  {

    template<class T, class CharT, class TraitT>
    void manage_decor(std::ios_base::event evt, std::ios_base &s, int const idx)
    {
      using deco_type = decor<T, CharT, TraitT>;
      if (evt == std::ios_base::erase_event)
      { // erase deco
        void const * const p = s.pword(idx);
        if (p)
        {
          delete static_cast<deco_type const * const>(p);
          s.pword(idx) = nullptr;
        }
      }
      else if (evt == std::ios_base::copyfmt_event)
      { // copy deco
        void const * const p = s.pword(idx);
        if (p)
        {
          auto np = new deco_type{ *static_cast<deco_type const * const>(p) };
          s.pword(idx) = static_cast<void*>(np);
        }
      }
    }

    template<class T> struct clearer {};

    template<class T, class CharT, class TraitT>
    std::basic_ostream<CharT, TraitT>& operator<< (
      std::basic_ostream<CharT, TraitT> &s, clearer<T> const &)
    {
      using deco_type = decor<T, CharT, TraitT>;
      void const * const p = s.pword(deco_type::xindex);
      if (p)
      { // delete if set
        delete static_cast<deco_type const *>(p);
        s.pword(deco_type::xindex) = nullptr;
      }
      return s;
    }

    template <class CharT> 
    struct default_data { static const CharT * decor[3]; };
    template <> 
    const char * default_data<char>::decor[3] = { "", ", ", "" };
    template <> 
    const wchar_t * default_data<wchar_t>::decor[3] = { L"", L", ", L"" };

  }

  // Clear decoration for T
  template<class T>
  detail::clearer<T> clear() { return{}; }
  template<class T, class CharT, class TraitT>
  void clear(std::basic_ostream<CharT, TraitT> &s) { s << detail::clearer<T>{}; }

  // impose decoration on ostream
  template<class T, class CharT, class TraitT>
  std::basic_ostream<CharT, TraitT>& operator<<(
    std::basic_ostream<CharT, TraitT> &s, decor<T, CharT, TraitT> && h)
  {
    using deco_type = decor<T, CharT, TraitT>;
    void const * const p = s.pword(deco_type::xindex);
    // delete if already set
    if (p) delete static_cast<deco_type const *>(p);
    s.pword(deco_type::xindex) = static_cast<void *>(new deco_type{ std::move(h) });
    // check whether we alread have a callback registered
    if (s.iword(deco_type::xindex) == 0)
    { // if this is not the case register callback and set iword
      s.register_callback(detail::manage_decor<T, CharT, TraitT>, deco_type::xindex);
      s.iword(deco_type::xindex) = 1;
    }
    return s;
  }

  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  struct defaulted
  {
    static inline decor<T, CharT, TraitT> decoration()
    {
      return{ detail::default_data<CharT>::decor[0],
        detail::default_data<CharT>::decor[1],
        detail::default_data<CharT>::decor[2] };
    }
  };

  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  decor<T, CharT, TraitT> decoration(
    std::basic_string<CharT, TraitT> const & prefix,
    std::basic_string<CharT, TraitT> const & delimiter,
    std::basic_string<CharT, TraitT> const & postfix)
  {
    return{ prefix, delimiter, postfix };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(
      std::basic_string<CharT, TraitT> const & delimiter)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ defaulted<T, CharT, TraitT>::decoration().prefix,
      delimiter, defaulted<T, CharT, TraitT>::decoration().postfix };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(CharT const * const prefix,
      CharT const * const delimiter, CharT const * const postfix)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ str_type{ prefix }, str_type{ delimiter }, str_type{ postfix } };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(CharT const * const delimiter)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ defaulted<T, CharT, TraitT>::decoration().prefix,
      str_type{ delimiter }, defaulted<T, CharT, TraitT>::decoration().postfix };
  }

  template<typename T, std::size_t N, std::size_t L>
  struct tuple
  {
    template<class CharT, class TraitT>
    static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
      std::basic_string<CharT, TraitT> const &delimiter)
    {
      s << std::get<N>(value) << delimiter;
      tuple<T, N + 1, L>::print(s, value, delimiter);
    }
  };

  template<typename T, std::size_t N>
  struct tuple<T, N, N>
  {
    template<class CharT, class TraitT>
    static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
      std::basic_string<CharT, TraitT> const &) {
      s << std::get<N>(value);
    }
  };

}

template<class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::tuple<> const & v)
{
  using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}

template<class CharT, class TraitT, class ... T>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::tuple<T...> const & v)
{
  using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
  using pretty_tuple = pretty::tuple<std::tuple<T...>, 0U, sizeof...(T)-1U>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  pretty_tuple::print(s, v, d ? d->delimiter : 
    defaulted_type::decoration().delimiter);
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}

template<class T, class U, class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::pair<T, U> const & v)
{
  using deco_type = pretty::decor<std::pair<T, U>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::pair<T, U>, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  s << v.first;
  s << (d ? d->delimiter : defaulted_type::decoration().delimiter);
  s << v.second;
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}


template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
  typename std::enable_if < pretty::detail::is_range<T>::value,
  std::basic_ostream < CharT, TraitT >> ::type & operator<< (
    std::basic_ostream<CharT, TraitT> &s, T const & v)
{
  bool first(true);
  using deco_type = pretty::decor<T, CharT, TraitT>;
  using default_type = pretty::defaulted<T, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto d = static_cast<pretty::decor<T, CharT, TraitT> const * const>(p);
  s << (d ? d->prefix : default_type::decoration().prefix);
  for (auto const & e : v)
  { // v is range thus range based for works
    if (!first) s << (d ? d->delimiter : default_type::decoration().delimiter);
    s << e;
    first = false;
  }
  s << (d ? d->postfix : default_type::decoration().postfix);
  return s;
}

#endif // pretty_print_0x57547_sa4884X_0_1_h_guard_
Stepparent answered 27/9, 2015 at 13:9 Comment(0)
A
12

Just copy the container to the console.

std::vector<int> v{1,2,3,4};
std::copy(v.begin(),v.end(),std::ostream_iterator<int>(std::cout, " " ));

Should output :

1 2 3 4
Ablebodied answered 7/4, 2015 at 15:28 Comment(0)
P
10

Using std::copy but without extra trailing separator

An alternative/modified approach using std::copy (as originally used in @JoshuaKravtiz answer) but without including an additional trailing separator after the last element:

#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>

template <typename T>
void print_contents(const std::vector<T>& v, const char * const separator = " ")
{
    if(!v.empty())
    {
        std::copy(v.begin(),
                  --v.end(),
                  std::ostream_iterator<T>(std::cout, separator));
        std::cout << v.back() << "\n";
    }
}

// example usage
int main() {
    std::vector<int> v{1, 2, 3, 4};
    print_contents(v);      // '1 2 3 4'
    print_contents(v, ":"); // '1:2:3:4'
    v = {};
    print_contents(v);      // ... no std::cout
    v = {1};
    print_contents(v);      // '1'
    return 0;
}

Example usage applied to container of a custom POD type:

// includes and 'print_contents(...)' as above ...

class Foo
{
    int i;
    friend std::ostream& operator<<(std::ostream& out, const Foo& obj);
public:
    Foo(const int i) : i(i) {}
};

std::ostream& operator<<(std::ostream& out, const Foo& obj)
{
    return out << "foo_" << obj.i; 
}

int main() {
    std::vector<Foo> v{1, 2, 3, 4};
    print_contents(v);      // 'foo_1 foo_2 foo_3 foo_4'
    print_contents(v, ":"); // 'foo_1:foo_2:foo_3:foo_4'
    v = {};
    print_contents(v);      // ... no std::cout
    v = {1};
    print_contents(v);      // 'foo_1'
    return 0;
}
Pomace answered 30/7, 2017 at 13:34 Comment(0)
D
8

The problem is probably in the previous loop:

(x = 17; isalpha(firstsquare); x++)

This loop will run not at all (if firstsquare is non-alphabetic) or will run forever (if it is alphabetic). The reason is that firstsquare doesn't change as x is incremented.

Distemper answered 25/5, 2012 at 7:19 Comment(0)
H
7

In C++11, a range-based for loop might be a good solution:

vector<char> items = {'a','b','c'};
for (char n : items)
    cout << n << ' ';

Output:

a b c 
Homs answered 12/3, 2015 at 4:0 Comment(0)
P
5

I am going to add another answer here, because I have come up with a different approach to my previous one, and that is to use locale facets.

The basics are here

Essentially what you do is:

  1. Create a class that derives from std::locale::facet. The slight downside is that you will need a compilation unit somewhere to hold its id. Let's call it MyPrettyVectorPrinter. You'd probably give it a better name, and also create ones for pair and map.
  2. In your stream function, you check std::has_facet< MyPrettyVectorPrinter >
  3. If that returns true, extract it with std::use_facet< MyPrettyVectorPrinter >( os.getloc() )
  4. Your facet objects will have values for the delimiters and you can read them. If the facet isn't found, your print function (operator<<) provides default ones. Note you can do the same thing for reading a vector.

I like this method because you can use a default print whilst still being able to use a custom override.

The downsides are needing a library for your facet if used in multiple projects (so can't just be headers-only) and also the fact that you need to beware about the expense of creating a new locale object.

I have written this as a new solution rather than modify my other one because I believe both approaches can be correct and you take your pick.

Pericles answered 25/5, 2012 at 7:14 Comment(2)
Let me get this straight: With this approach, do I need to actively whitelist each container type that I want to use?Gail
Well really one should not extend std other than for ones own types, but you write an overload of operator<< for each container type (vector, map, list, deque) plus pair that you want to be able to print. Of course some may share a facet (e.g. you might wish to print list, vector and deque all the same). You provide a "default" print method but allow users to create a facet and locale and imbue before printing. A bit like the way boost prints their date_time. One can also load their facet onto the global locale to print that way by default.Pericles
U
5

overload operator<<:

template<typename OutStream, typename T>
OutStream& operator<< (OutStream& out, const vector<T>& v)
{
    for (auto const& tmp : v)
        out << tmp << " ";
    out << endl;
    return out;
}

Usage:

vector <int> test {1,2,3};
wcout << test; // or any output stream
Uremia answered 12/8, 2016 at 0:14 Comment(0)
M
3

I see two problems. As pointed out in

for (x = 17; isalpha(firstsquare); x++)

there's either an infinite loop or never executed at all, and also in if (entrance == 'S') if the entrance character is different than 'S' then nothing in pushed to the path vector, making it empty and thus printing nothing on screen. You can test the latter checking for path.empty() or printing path.size().

Either way, wouldn't it be better to use a string instead of a vector? You can access the string contents like an array as well, seek characters, extract substrings and print the string easily (without a loop).

Doing it all with strings might be the way to have it written in a less convoluted way and make it easier to spot the problem.

Mila answered 25/5, 2012 at 7:32 Comment(0)
S
3

This answer is based on the answer from Zorawar, but I couldn't leave a comment there.

You can make the auto (C++11)/typedef version const by using cbegin and cend instead

for (auto i = path.cbegin(); i != path.cend(); ++i)
    std::cout << *i << ' ';
Skinhead answered 7/2, 2017 at 16:28 Comment(0)
S
2

The goal here is to use ADL to do customization of how we pretty print.

You pass in a formatter tag, and override 4 functions (before, after, between and descend) in the tag's namespace. This changes how the formatter prints 'adornments' when iterating over containers.

A default formatter that does {(a->b),(c->d)} for maps, (a,b,c) for tupleoids, "hello" for strings, [x,y,z] for everything else included.

It should "just work" with 3rd party iterable types (and treat them like "everything else").

If you want custom adornments for your 3rd party iterables, simply create your own tag. It will take a bit of work to handle map descent (you need to overload pretty_print_descend( your_tag to return pretty_print::decorator::map_magic_tag<your_tag>). Maybe there is a cleaner way to do this, not sure.

A little library to detect iterability, and tuple-ness:

namespace details {
  using std::begin; using std::end;
  template<class T, class=void>
  struct is_iterable_test:std::false_type{};
  template<class T>
  struct is_iterable_test<T,
    decltype((void)(
      (void)(begin(std::declval<T>())==end(std::declval<T>()))
      , ((void)(std::next(begin(std::declval<T>()))))
      , ((void)(*begin(std::declval<T>())))
      , 1
    ))
  >:std::true_type{};
  template<class T>struct is_tupleoid:std::false_type{};
  template<class...Ts>struct is_tupleoid<std::tuple<Ts...>>:std::true_type{};
  template<class...Ts>struct is_tupleoid<std::pair<Ts...>>:std::true_type{};
  // template<class T, size_t N>struct is_tupleoid<std::array<T,N>>:std::true_type{}; // complete, but problematic
}
template<class T>struct is_iterable:details::is_iterable_test<std::decay_t<T>>{};
template<class T, std::size_t N>struct is_iterable<T(&)[N]>:std::true_type{}; // bypass decay
template<class T>struct is_tupleoid:details::is_tupleoid<std::decay_t<T>>{};

template<class T>struct is_visitable:std::integral_constant<bool, is_iterable<T>{}||is_tupleoid<T>{}> {};

A library that lets us visit the contents of an iterable or tuple type object:

template<class C, class F>
std::enable_if_t<is_iterable<C>{}> visit_first(C&& c, F&& f) {
  using std::begin; using std::end;
  auto&& b = begin(c);
  auto&& e = end(c);
  if (b==e)
      return;
  std::forward<F>(f)(*b);
}
template<class C, class F>
std::enable_if_t<is_iterable<C>{}> visit_all_but_first(C&& c, F&& f) {
  using std::begin; using std::end;
  auto it = begin(c);
  auto&& e = end(c);
  if (it==e)
      return;
  it = std::next(it);
  for( ; it!=e; it = std::next(it) ) {
    f(*it);
  }
}

namespace details {
  template<class Tup, class F>
  void visit_first( std::index_sequence<>, Tup&&, F&& ) {}
  template<size_t... Is, class Tup, class F>
  void visit_first( std::index_sequence<0,Is...>, Tup&& tup, F&& f ) {
    std::forward<F>(f)( std::get<0>( std::forward<Tup>(tup) ) );
  }
  template<class Tup, class F>
  void visit_all_but_first( std::index_sequence<>, Tup&&, F&& ) {}
  template<size_t... Is,class Tup, class F>
  void visit_all_but_first( std::index_sequence<0,Is...>, Tup&& tup, F&& f ) {
    int unused[] = {0,((void)(
      f( std::get<Is>(std::forward<Tup>(tup)) )
    ),0)...};
    (void)(unused);
  }
}
template<class Tup, class F>
std::enable_if_t<is_tupleoid<Tup>{}> visit_first(Tup&& tup, F&& f) {
  details::visit_first( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
}
template<class Tup, class F>
std::enable_if_t<is_tupleoid<Tup>{}> visit_all_but_first(Tup&& tup, F&& f) {
  details::visit_all_but_first( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
}

A pretty printing library:

namespace pretty_print {
  namespace decorator {
    struct default_tag {};
    template<class Old>
    struct map_magic_tag:Old {}; // magic for maps

    // Maps get {}s. Write trait `is_associative` to generalize:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, std::map<Xs...> const& ) {
      s << CharT('{');
    }

    template<class CharT, class Traits, class...Xs >
    void pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, std::map<Xs...> const& ) {
      s << CharT('}');
    }

    // tuples and pairs get ():
    template<class CharT, class Traits, class Tup >
    std::enable_if_t<is_tupleoid<Tup>{}> pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, Tup const& ) {
      s << CharT('(');
    }

    template<class CharT, class Traits, class Tup >
    std::enable_if_t<is_tupleoid<Tup>{}> pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, Tup const& ) {
      s << CharT(')');
    }

    // strings with the same character type get ""s:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, std::basic_string<CharT, Xs...> const& ) {
      s << CharT('"');
    }
    template<class CharT, class Traits, class...Xs >
    void pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, std::basic_string<CharT, Xs...> const& ) {
      s << CharT('"');
    }
    // and pack the characters together:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_between( default_tag, std::basic_ostream<CharT, Traits>&, std::basic_string<CharT, Xs...> const& ) {}

    // map magic. When iterating over the contents of a map, use the map_magic_tag:
    template<class...Xs>
    map_magic_tag<default_tag> pretty_print_descend( default_tag, std::map<Xs...> const& ) {
      return {};
    }
    template<class old_tag, class C>
    old_tag pretty_print_descend( map_magic_tag<old_tag>, C const& ) {
      return {};
    }

    // When printing a pair immediately within a map, use -> as a separator:
    template<class old_tag, class CharT, class Traits, class...Xs >
    void pretty_print_between( map_magic_tag<old_tag>, std::basic_ostream<CharT, Traits>& s, std::pair<Xs...> const& ) {
      s << CharT('-') << CharT('>');
    }
  }

  // default behavior:
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_before( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT('[');
  }
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_after( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT(']');
  }
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_between( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT(',');
  }
  template<class Tag, class Container>
  Tag&& pretty_print_descend( Tag&& tag, Container const& ) {
    return std::forward<Tag>(tag);
  }

  // print things by default by using <<:
  template<class Tag=decorator::default_tag, class Scalar, class CharT, class Traits>
  std::enable_if_t<!is_visitable<Scalar>{}> print( std::basic_ostream<CharT, Traits>& os, Scalar&& scalar, Tag&&=Tag{} ) {
    os << std::forward<Scalar>(scalar);
  }
  // for anything visitable (see above), use the pretty print algorithm:
  template<class Tag=decorator::default_tag, class C, class CharT, class Traits>
  std::enable_if_t<is_visitable<C>{}> print( std::basic_ostream<CharT, Traits>& os, C&& c, Tag&& tag=Tag{} ) {
    pretty_print_before( std::forward<Tag>(tag), os, std::forward<C>(c) );
    visit_first( c, [&](auto&& elem) {
      print( os, std::forward<decltype(elem)>(elem), pretty_print_descend( std::forward<Tag>(tag), std::forward<C>(c) ) );
    });
    visit_all_but_first( c, [&](auto&& elem) {
      pretty_print_between( std::forward<Tag>(tag), os, std::forward<C>(c) );
      print( os, std::forward<decltype(elem)>(elem), pretty_print_descend( std::forward<Tag>(tag), std::forward<C>(c) ) );
    });
    pretty_print_after( std::forward<Tag>(tag), os, std::forward<C>(c) );
  }
}

Test code:

int main() {
  std::vector<int> x = {1,2,3};

  pretty_print::print( std::cout, x );
  std::cout << "\n";

  std::map< std::string, int > m;
  m["hello"] = 3;
  m["world"] = 42;

  pretty_print::print( std::cout, m );
  std::cout << "\n";
}

live example

This does use C++14 features (some _t aliases, and auto&& lambdas), but none are essential.

Slippery answered 25/11, 2014 at 3:2 Comment(1)
@KerrekSB working version, with some changes. The bulk of the code is general "visit tuples/iterables", and fancy formatting (including -> within the pairs of maps) at this point. The core of the pretty print library is nice and small, which is nice. I tried to make it easily extendible, not sure if I succeeded.Slippery
P
2

If boost is an option then you can use boost::algorithm::join. For example to print out a vector of std::string:

#include <boost/algorithm/string/join.hpp>

std::vector<std::string> vs { "some", "string", "vector" };
std::cout << boost::algorithm::join(vs, " | ") << '\n';

For vectors of other types you'll need to transform to string first

#include <algorithm>
#include <iostream>
#include <numeric>
#include <vector>

#include <boost/algorithm/string/join.hpp>
#include <boost/range/adaptor/transformed.hpp>

int main()
{
    using boost::adaptors::transformed;
    using boost::algorithm::join;

    // Generate the vector
    std::vector<int> vi(10);
    std::iota(vi.begin(), vi.end(), -3);

    // Print out the vector
    std::cout << join(vi |
                 transformed(static_cast<std::string(*)(int)>(std::to_string)),
                 ", ")
              << '\n';
}

Demo on Godbolt

Polynomial answered 6/3, 2021 at 15:17 Comment(1)
what's wrong with you guys? No one has posted an answer using boost::algorithm::joinPolynomial
T
1

My solution is simple.h, which is part of scc package. All std containers, maps, sets, c-arrays are printable.

Trumpeter answered 25/5, 2012 at 7:14 Comment(4)
Interesting. I like the template-of-template approach for containers, but does it work for custom containers and STL containers with non-standard predicates or allocators? (I did something similar for an attempt to implement a bimap in C++0x using variadic templates.) Also, you don't seem to use iterators generically for your printing routines; why the explicit use of a counter i?Gail
What is container with non-standard predicates? Custom container which match signature will be printed. Non standard allocaters are not supported right now, but it is easy to fix. I just don't need this for now.Trumpeter
There is not good reason to use index instead of iterators. Historical reasons. Will fix it when I will have time.Trumpeter
By "container with non-standard predicates" I mean something like a std::set with a custom comparator, or an unordered_map with a custom equality. It'd be very important to support those constructions.Gail
A
1

In C++11

for (auto i = path.begin(); i != path.end(); ++i)
std::cout << *i << ' ';

for(int i=0; i<path.size(); ++i)
std::cout << path[i] << ' ';
Anticipant answered 24/11, 2017 at 14:38 Comment(1)
This answer does not give any additional information compared to the already existing answers.Fenny
C
1

Coming out of one of the first BoostCon (now called CppCon), I and two others worked on a library to do just this. The main sticking point was needing to extend namespace std. That turned out to be a no-go for a boost library.

Unfortunately the links to the code no longer work, but you might find some interesting tidbits in the discussions (at least those that aren't talking about what to name it!)

http://boost.2283326.n4.nabble.com/explore-Library-Proposal-Container-Streaming-td2619544.html

Comer answered 16/6, 2019 at 22:35 Comment(0)
H
1

Here is my version of implementation done in 2016

Everything is in one header, so it's easy to use https://github.com/skident/eos/blob/master/include/eos/io/print.hpp

/*! \file       print.hpp
 *  \brief      Useful functions for work with STL containers. 
 *          
 *  Now it supports generic print for STL containers like: [elem1, elem2, elem3]
 *  Supported STL conrainers: vector, deque, list, set multiset, unordered_set,
 *  map, multimap, unordered_map, array
 *
 *  \author     Skident
 *  \date       02.09.2016
 *  \copyright  Skident Inc.
 */

#pragma once

// check is the C++11 or greater available (special hack for MSVC)
#if (defined(_MSC_VER) && __cplusplus >= 199711L) || __cplusplus >= 201103L
    #define MODERN_CPP_AVAILABLE 1
#endif


#include <iostream>
#include <sstream>
#include <vector>
#include <deque>
#include <set>
#include <list>
#include <map>
#include <cctype>

#ifdef MODERN_CPP_AVAILABLE
    #include <array>
    #include <unordered_set>
    #include <unordered_map>
    #include <forward_list>
#endif


#define dump(value) std::cout << (#value) << ": " << (value) << std::endl

#define BUILD_CONTENT                                                       \
        std::stringstream ss;                                               \
        for (; it != collection.end(); ++it)                                \
        {                                                                   \
            ss << *it << elem_separator;                                    \
        }                                                                   \


#define BUILD_MAP_CONTENT                                                   \
        std::stringstream ss;                                               \
        for (; it != collection.end(); ++it)                                \
        {                                                                   \
            ss  << it->first                                                \
                << keyval_separator                                         \
                << it->second                                               \
                << elem_separator;                                          \
        }                                                                   \


#define COMPILE_CONTENT                                                     \
        std::string data = ss.str();                                        \
        if (!data.empty() && !elem_separator.empty())                       \
            data = data.substr(0, data.rfind(elem_separator));              \
        std::string result = first_bracket + data + last_bracket;           \
        os << result;                                                       \
        if (needEndl)                                                       \
            os << std::endl;                                                \



////
///
///
/// Template definitions
///
///

//generic template for classes: deque, list, forward_list, vector
#define VECTOR_AND_CO_TEMPLATE                                          \
    template<                                                           \
        template<class T,                                               \
                 class Alloc = std::allocator<T> >                      \
        class Container, class Type, class Alloc>                       \

#define SET_TEMPLATE                                                    \
    template<                                                           \
        template<class T,                                               \
                 class Compare = std::less<T>,                          \
                 class Alloc = std::allocator<T> >                      \
            class Container, class T, class Compare, class Alloc>       \

#define USET_TEMPLATE                                                   \
    template<                                                           \
template < class Key,                                                   \
           class Hash = std::hash<Key>,                                 \
           class Pred = std::equal_to<Key>,                             \
           class Alloc = std::allocator<Key>                            \
           >                                                            \
    class Container, class Key, class Hash, class Pred, class Alloc     \
    >                                                                   \


#define MAP_TEMPLATE                                                    \
    template<                                                           \
        template<class Key,                                             \
                class T,                                                \
                class Compare = std::less<Key>,                         \
                class Alloc = std::allocator<std::pair<const Key,T> >   \
                >                                                       \
        class Container, class Key,                                     \
        class Value/*, class Compare, class Alloc*/>                    \


#define UMAP_TEMPLATE                                                   \
    template<                                                           \
        template<class Key,                                             \
                   class T,                                             \
                   class Hash = std::hash<Key>,                         \
                   class Pred = std::equal_to<Key>,                     \
                   class Alloc = std::allocator<std::pair<const Key,T> >\
                 >                                                      \
        class Container, class Key, class Value,                        \
        class Hash, class Pred, class Alloc                             \
                >                                                       \


#define ARRAY_TEMPLATE                                                  \
    template<                                                           \
        template<class T, std::size_t N>                                \
        class Array, class Type, std::size_t Size>                      \



namespace eos
{
    static const std::string default_elem_separator     = ", ";
    static const std::string default_keyval_separator   = " => ";
    static const std::string default_first_bracket      = "[";
    static const std::string default_last_bracket       = "]";


    //! Prints template Container<T> as in Python
    //! Supported containers: vector, deque, list, set, unordered_set(C++11), forward_list(C++11)
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    template<class Container>
    void print( const Container& collection
              , const std::string& elem_separator   = default_elem_separator
              , const std::string& first_bracket    = default_first_bracket
              , const std::string& last_bracket     = default_last_bracket
              , std::ostream& os = std::cout
              , bool needEndl = true
            )
    {
        typename Container::const_iterator it = collection.begin();
        BUILD_CONTENT
        COMPILE_CONTENT
    }


    //! Prints collections with one template argument and allocator as in Python.
    //! Supported standard collections: vector, deque, list, forward_list
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    VECTOR_AND_CO_TEMPLATE
    void print( const Container<Type>& collection
              , const std::string& elem_separator   = default_elem_separator
              , const std::string& first_bracket    = default_first_bracket
              , const std::string& last_bracket     = default_last_bracket
              , std::ostream& os = std::cout
              , bool needEndl = true
            )
    {
        typename Container<Type>::const_iterator it = collection.begin();
        BUILD_CONTENT
        COMPILE_CONTENT
    }


    //! Prints collections like std:set<T, Compare, Alloc> as in Python
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    SET_TEMPLATE
    void print( const Container<T, Compare, Alloc>& collection
              , const std::string& elem_separator   = default_elem_separator
              , const std::string& first_bracket    = default_first_bracket
              , const std::string& last_bracket     = default_last_bracket
              , std::ostream& os = std::cout
              , bool needEndl = true
            )
    {
        typename Container<T, Compare, Alloc>::const_iterator it = collection.begin();
        BUILD_CONTENT
        COMPILE_CONTENT
    }


    //! Prints collections like std:unordered_set<Key, Hash, Pred, Alloc> as in Python
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    USET_TEMPLATE
    void print( const Container<Key, Hash, Pred, Alloc>& collection
              , const std::string& elem_separator   = default_elem_separator
              , const std::string& first_bracket    = default_first_bracket
              , const std::string& last_bracket     = default_last_bracket
              , std::ostream& os = std::cout
              , bool needEndl = true
            )
    {
        typename Container<Key, Hash, Pred, Alloc>::const_iterator it = collection.begin();
        BUILD_CONTENT
        COMPILE_CONTENT
    }

    //! Prints collections like std:map<T, U> as in Python
    //! supports generic objects of std: map, multimap
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    MAP_TEMPLATE
    void print(   const Container<Key, Value>& collection
                , const std::string& elem_separator   = default_elem_separator
                , const std::string& keyval_separator = default_keyval_separator
                , const std::string& first_bracket    = default_first_bracket
                , const std::string& last_bracket     = default_last_bracket
                , std::ostream& os = std::cout
                , bool needEndl = true
        )
    {
        typename Container<Key, Value>::const_iterator it = collection.begin();
        BUILD_MAP_CONTENT
        COMPILE_CONTENT
    }

    //! Prints classes like std:unordered_map as in Python
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    UMAP_TEMPLATE
    void print(   const Container<Key, Value, Hash, Pred, Alloc>& collection
                , const std::string& elem_separator   = default_elem_separator
                , const std::string& keyval_separator = default_keyval_separator
                , const std::string& first_bracket    = default_first_bracket
                , const std::string& last_bracket     = default_last_bracket
                , std::ostream& os = std::cout
                , bool needEndl = true
        )
    {
        typename Container<Key, Value, Hash, Pred, Alloc>::const_iterator it = collection.begin();
        BUILD_MAP_CONTENT
        COMPILE_CONTENT
    }

    //! Prints collections like std:array<T, Size> as in Python
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    ARRAY_TEMPLATE
    void print(   const Array<Type, Size>& collection
                , const std::string& elem_separator   = default_elem_separator
                , const std::string& first_bracket    = default_first_bracket
                , const std::string& last_bracket     = default_last_bracket
                , std::ostream& os = std::cout
                , bool needEndl = true
            )
    {
        typename Array<Type, Size>::const_iterator it = collection.begin();
        BUILD_CONTENT
        COMPILE_CONTENT
    }

    //! Removes all whitespaces before data in string.
    //! \param str string with data
    //! \return string without whitespaces in left part
    std::string ltrim(const std::string& str);

    //! Removes all whitespaces after data in string
    //! \param str string with data
    //! \return string without whitespaces in right part
    std::string rtrim(const std::string& str);

    //! Removes all whitespaces before and after data in string
    //! \param str string with data
    //! \return string without whitespaces before and after data in string
    std::string trim(const std::string& str);



    ////////////////////////////////////////////////////////////
    ////////////////////////ostream logic//////////////////////
    /// Should be specified for concrete containers
    /// because of another types can be suitable
    /// for templates, for example templates break
    /// the code like this "cout << string("hello") << endl;"
    ////////////////////////////////////////////////////////////



#define PROCESS_VALUE_COLLECTION(os, collection)                            \
    print(  collection,                                                     \
            default_elem_separator,                                         \
            default_first_bracket,                                          \
            default_last_bracket,                                           \
            os,                                                             \
            false                                                           \
    );                                                                      \

#define PROCESS_KEY_VALUE_COLLECTION(os, collection)                        \
    print(  collection,                                                     \
            default_elem_separator,                                         \
            default_keyval_separator,                                       \
            default_first_bracket,                                          \
            default_last_bracket,                                           \
            os,                                                             \
            false                                                           \
    );                                                                      \

    ///< specialization for vector
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::vector<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for deque
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::deque<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for list
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::list<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for set
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::set<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for multiset
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::multiset<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

#ifdef MODERN_CPP_AVAILABLE
    ///< specialization for unordered_map
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::unordered_set<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for forward_list
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::forward_list<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for array
    template<class T, std::size_t N>
    std::ostream& operator<<(std::ostream& os, const std::array<T, N>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }
#endif

    ///< specialization for map, multimap
    MAP_TEMPLATE
    std::ostream& operator<<(std::ostream& os, const Container<Key, Value>& collection)
    {
        PROCESS_KEY_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for unordered_map
    UMAP_TEMPLATE
    std::ostream& operator<<(std::ostream& os, const Container<Key, Value, Hash, Pred, Alloc>& collection)
    {
        PROCESS_KEY_VALUE_COLLECTION(os, collection)
        return os;
    }
}
Halla answered 24/5, 2020 at 6:6 Comment(0)
P
1

You can use std::experimental::make_ostream_joiner:

#include <algorithm>
#include <experimental/iterator>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
 
int main()
{
    std::vector<int> vi(12);
    std::iota(vi.begin(), vi.end(), -5);
    std::cout << "Int vector:\n";
    std::copy(std::begin(vi),
              std::end(vi),
              std::experimental::make_ostream_joiner(std::cout, ", "));

    std::cout <<"\nString vector:\n[";
    std::vector<std::string> vs { "some", "string", "vector" };
    std::copy(std::begin(vs),
              std::end(vs),
              std::experimental::make_ostream_joiner(std::cout, "] - ["));
    std::cout << "]\n";
}

Demo on Godbolt

Polynomial answered 19/6, 2021 at 3:7 Comment(0)
P
1
template <typename T>
std::ostream& operator<<( std::ostream& ostrm, const std::vector<T>& vec ){
    ostrm << "[";
    for( int j = 0, n = vec.size(); j < n; ++j ){
        ostrm << " " << vec[ j ] << " ,"[ j < n - 1 ];
    }
    return ostrm << "]";
}

[ 1, 2, 3, 4 ]

Photoelectrotype answered 11/10, 2022 at 12:58 Comment(0)
L
0

I wrote a an operator<< which prints any iterable, which includes custom containers, standard containers, and arrays with known bounds. Requires c++11:

template<typename Container, typename = 
    std::enable_if_t<std::is_same_v<std::void_t<
        decltype(static_cast<typename Container::const_iterator (*)(const Container&)>(&std::cbegin)),
        decltype(static_cast<typename Container::const_iterator (*)(const Container&)>(&std::cend))>, void>
        && !std::is_same_v<std::string, Container>>>
std::ostream& operator<<(std::ostream& out, const Container &vec)
{
    std::cout << "[ ";
    for(const auto& t: vec){
        std::cout << t << " ";
    }
    std::cout << "] ";
    return out;
}
Liable answered 20/10, 2021 at 16:1 Comment(0)
L
0

You could use perr.h as a starting point:

#include <vector>
#include "perr.h"

int main() {
    std::vector< int > v = { 1, 2, 3 };
    perr << v;
}

You just need to grab the header from GitHub (https://github.com/az5112/perr).

Latreese answered 4/11, 2022 at 19:39 Comment(0)
G
0

With C++23, you can simply write:

std::print("{}", vec);

and that works. With C++20, you could use std::format and the << operator:

std::cout << std::format("{}", vec);

Of course, you'll need to have included the appropriate standard library header (#include <print> or #include <format>).

For older C++ versions - consult other answers.

Gina answered 12/4, 2023 at 12:2 Comment(0)
G
0

One solution used the nlohmann::json library

nlohmann::json Github home page

// Create by [email protected] at 2023-08-08 10:14:27+0800
#include <nlohmann/json.hpp>
#include <iostream>

int main() {
    std::cout << nlohmann::json(std::vector<int>{1, 2, 3}) << std::endl;
    std::cout << nlohmann::json(std::vector<int>{1, 2, 3}).dump() << std::endl;
    std::cout << nlohmann::json(std::vector<std::string>{"hello", "world"}) << std::endl;
    std::cout << nlohmann::json(std::vector<std::string>{"hello", "world"}).dump() << std::endl;
}

Console Output

[1,2,3]
[1,2,3]
["hello","world"]
["hello","world"]
Glarus answered 8/8, 2023 at 2:23 Comment(0)
N
-1

For those that are interested: I wrote a generalized solution that takes the best of both worlds, is more generalized to any type of range and puts quotes around non-arithmetic types (desired for string-like types). Additionally, this approach should not have any ADL issues and also avoid 'surprises' (since it's added explicitly on a case-by-case basis):

template <typename T>
inline constexpr bool is_string_type_v = std::is_convertible_v<const T&, std::string_view>;

template<class T>
struct range_out {
  range_out(T& range) : r_(range) {
  }
  T& r_;
  static_assert(!::is_string_type_v<T>, "strings and string-like types should use operator << directly");
};

template <typename T>
std::ostream& operator<< (std::ostream& out, range_out<T>& range) {
  constexpr bool is_string_like = is_string_type_v<T::value_type>;
  constexpr std::string_view sep{ is_string_like ? "', '" : ", " };

  if (!range.r_.empty()) {
    out << (is_string_like ? "['" : "[");
    out << *range.r_.begin();
    for (auto it = range.r_.begin() + 1; it != range.r_.end(); ++it) {
      out << sep << *it;
    }
    out << (is_string_like ? "']" : "]");
  }
  else {
    out << "[]";
  }

  return out;
}

Now it's fairly easy to use on any range:

std::cout << range_out{ my_vector };

The string-like check leaves room for improvement. I do also have static_assert check in my solution to avoid std::basic_string<>, but I left it out here for simplicity.

Nightie answered 21/8, 2019 at 9:22 Comment(0)
S
-2

For people who want one-liners without loops:

I can't believe that noone has though of this, but perhaps it's because of the more C-like approach. Anyways, it is perfectly safe to do this without a loop, in a one-liner, ASSUMING that the std::vector<char> is null-terminated:

std::vector<char> test { 'H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd', '!', '\0' };
std::cout << test.data() << std::endl;

But I would wrap this in the ostream operator, as @Zorawar suggested, just to be safe:

template <typename T>std::ostream& operator<< (std::ostream& out, std::vector<T>& v)
{
    v.push_back('\0'); // safety-check!
    out << v.data();
    return out;
}

std::cout << test << std::endl; // will print 'Hello, world!'

We can achieve similar behaviour by using printf instead:

fprintf(stdout, "%s\n", &test[0]); // will also print 'Hello, world!'

NOTE:

The overloaded ostream operator needs to accept the vector as non-const. This might make the program insecure or introduce misusable code. Also, since null-character is appended, a reallocation of the std::vector might occur. So using for-loops with iterators will likely be faster.

Spano answered 26/10, 2019 at 12:48 Comment(2)
1. fprintf(stdout, "%s\n", &test[0]); is no different from std::cout << test.data(), both require a null-terminated vector. 2. "But I would wrap this in the ostream operator" << operator that modifies the right operand is a very bad idea.Veach
I have used fprintf(stdout, "%s\n", &test[0]); for long time in code without it ever giving me any trouble. Interesting! And I agree that it's not so nice to modify the vector in ostream operator, but I dislike both manually looping and using iterators. Somehow I feel like for simple operations like printing a std::vector<char> the standard library should hide these things away. But C++ is developing constantly, it might come soon.Spano
K
-2

template collection:

apply std::cout << and std::to_string

to std::vector, std::array and std::tuple

As printing a vector in cpp turned out to be surprisingly much work (at least compared to how basic this task is) and as one steps over the same problem again, when working with other container, here a more general solution ...

Template collection content

This template collection handles 3 container types: std::vector, std::array and std::tuple. It defines std::to_string() for those and makes it possible to directly print them out by std::cout << container;.

Further it defines the << operator for std::string << container. With this it gets possible to construct strings containig these container types in a compact way.

From

std::string s1 = "s1: " + std::to_string(arr) + "; " + std::to_string(vec) + "; " + std::to_string(tup);

we get to

std::string s2 = STR() << "s2: " << arr << "; " << vec << "; " << tup;

Code

You can test this code interactively: here.

#include <iostream>
#include <string>
#include <tuple>
#include <vector>
#include <array>

namespace std
{   
    // declations: needed for std::to_string(std::vector<std::tuple<int, float>>)
    std::string to_string(std::string str);
    std::string to_string(const char *str);
    template<typename T, size_t N>
    std::string to_string(std::array<T, N> const& arr);
    template<typename T>
    std::string to_string(std::vector<T> const& vec);
    template<typename... Args>
    std::string to_string(const std::tuple<Args...>& tup);
    
    std::string to_string(std::string str)
    {
        return std::string(str);
    }
    std::string to_string(const char *str)
    {
        return std::string(str);
    }

    template<typename T, size_t N>
    std::string to_string(std::array<T, N> const& arr)
    {
        std::string s="{";
        for (std::size_t t = 0; t != N; ++t)
            s += std::to_string(arr[t]) + (t+1 < N ? ", ":"");
        return s + "}";
    }

    template<typename T>
    std::string to_string(std::vector<T> const& vec)
    {
        std::string s="[";
        for (std::size_t t = 0; t != vec.size(); ++t)
            s += std::to_string(vec[t]) + (t+1 < vec.size() ? ", ":"");
        return s + "]";
    }
    
    // to_string(tuple)
    // https://en.cppreference.com/w/cpp/utility/tuple/operator%3D
    template<class Tuple, std::size_t N>
    struct TupleString
    {
        static std::string str(const Tuple& tup)
        {
            std::string out;
            out += TupleString<Tuple, N-1>::str(tup);
            out += ", ";
            out += std::to_string(std::get<N-1>(tup));
            return out;
        }
    };
    template<class Tuple>
    struct TupleString<Tuple, 1>
    {
        static std::string str(const Tuple& tup)
        {
            std::string out;
            out += std::to_string(std::get<0>(tup));
            return out;
        }
    };
    template<typename... Args>
    std::string to_string(const std::tuple<Args...>& tup)
    {
        std::string out = "(";
        out += TupleString<decltype(tup), sizeof...(Args)>::str(tup);
        out += ")";
        return out;
    }
} // namespace std


/**
 * cout: cout << continer
 */
template <typename T, std::size_t N> // cout << array
std::ostream& operator <<(std::ostream &out, std::array<T, N> &con)
{
    out <<  std::to_string(con);
    return out;
}
template <typename T, typename A> // cout << vector
std::ostream& operator <<(std::ostream &out, std::vector<T, A> &con)
{
    out <<  std::to_string(con);
    return out;
}
template<typename... Args> // cout << tuple
std::ostream& operator <<(std::ostream &out, std::tuple<Args...> &con)
{
    out <<  std::to_string(con);
    return out;
}

/**
 * Concatenate: string << continer
 */
template <class C>
std::string operator <<(std::string str, C &con)
{
    std::string out = str;
    out += std::to_string(con);
    return out;
}
#define STR() std::string("")

int main()
{
    std::array<int, 3> arr {1, 2, 3};
    std::string sArr = std::to_string(arr);
    std::cout << "std::array" << std::endl;
    std::cout << "\ttest to_string: " << sArr << std::endl;
    std::cout << "\ttest cout <<: " << arr << std::endl;
    std::cout << "\ttest string <<: " << (std::string() << arr) << std::endl;
    
    std::vector<std::string> vec {"a", "b"};
    std::string sVec = std::to_string(vec);
    std::cout << "std::vector" << std::endl;
    std::cout << "\ttest to_string: " << sVec << std::endl;
    std::cout << "\ttest cout <<: " << vec << std::endl;
    std::cout << "\ttest string <<: " << (std::string() << vec) << std::endl;
    
    std::tuple<int, std::string> tup = std::make_tuple(5, "five");
    std::string sTup = std::to_string(tup);
    std::cout << "std::tuple" << std::endl;
    std::cout << "\ttest to_string: " << sTup << std::endl;
    std::cout << "\ttest cout <<: " << tup << std::endl;
    std::cout << "\ttest string <<: " << (std::string() << tup) << std::endl;
    
    std::vector<std::tuple<int, float>> vt {std::make_tuple(1, .1), std::make_tuple(2, .2)};
    std::string sVt = std::to_string(vt);
    std::cout << "std::vector<std::tuple>" << std::endl;
    std::cout << "\ttest to_string: " << sVt << std::endl;
    std::cout << "\ttest cout <<: " << vt << std::endl;
    std::cout << "\ttest string <<: " << (std::string() << vt) << std::endl;
    
    std::cout << std::endl;
    
    std::string s1 = "s1: " + std::to_string(arr) + "; " + std::to_string(vec) + "; " + std::to_string(tup);
    std::cout << s1 << std::endl;
    
    std::string s2 = STR() << "s2: " << arr << "; " << vec << "; " << tup;
    std::cout << s2 << std::endl;

    return 0;
}

Output

std::array
    test to_string: {1, 2, 3}
    test cout <<: {1, 2, 3}
    test string <<: {1, 2, 3}
std::vector
    test to_string: [a, b]
    test cout <<: [a, b]
    test string <<: [a, b]
std::tuple
    test to_string: (5, five)
    test cout <<: (5, five)
    test string <<: (5, five)
std::vector<std::tuple>
    test to_string: [(1, 0.100000), (2, 0.200000)]
    test cout <<: [(1, 0.100000), (2, 0.200000)]
    test string <<: [(1, 0.100000), (2, 0.200000)]

s1: {1, 2, 3}; [a, b]; (5, five)
s2: {1, 2, 3}; [a, b]; (5, five)
Kilbride answered 17/9, 2020 at 7:55 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.