I'm attempting to write a custom Theano Op which numerically integrates a function between two values. The Op is a custom likelihood for PyMC3 which involves the numerical evaluation of some integrals. I can't simply use the @as_op decorator as I need to use HMC to do the MCMC step. Any help would be much appreciated, as this question seems to have come up several times but has never been solved (e.g. https://stackoverflow.com/questions/36853015/using-theano-with-numerical-integration, Theano: implementing an integral function).
Clearly one solution would be to write a numerical integrator within Theano, but this seems like a waste of effort when very good integrators are already available, for example through scipy.integrate.
To keep this as a minimal example, let's just try and integrate a function between 0 and 1 inside an Op. The following integrates a Theano function outside of an Op, and produces correct results as far as my testing has gone.
import theano
import theano.tensor as tt
from scipy.integrate import quad
x = tt.dscalar('x')
y = x**4 # integrand
f = theano.function([x], y)
print f(0)
print f(1)
ans = integrate.quad(f, 0, 1)[0]
print ans
However, attempting to do integration within an Op appears much harder. My current best effort is:
import numpy as np
import theano
import theano.tensor as tt
from scipy import integrate
class IntOp(theano.Op):
__props__ = ()
def make_node(self, x):
x = tt.as_tensor_variable(x)
return theano.Apply(self, [x], [x.type()])
def perform(self, node, inputs, output_storage):
x = inputs[0]
z = output_storage[0]
f_to_int = theano.function([x], x)
z[0] = tt.as_tensor_variable(integrate.quad(f_to_int, 0, 1)[0])
def infer_shape(self, node, i0_shapes):
return i0_shapes
def grad(self, inputs, output_grads):
ans = integrate.quad(output_grads[0], 0, 1)[0]
return [ans]
intOp = IntOp()
x = tt.dmatrix('x')
y = intOp(x)
f = theano.function([x], y)
inp = np.asarray([[2, 4], [6, 8]], dtype=theano.config.floatX)
out = f(inp)
print inp
print out
Which gives the following error:
Traceback (most recent call last):
File "stackoverflow.py", line 35, in <module>
out = f(inp)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 871, in __call__
storage_map=getattr(self.fn, 'storage_map', None))
File "/usr/local/lib/python2.7/dist-packages/theano/gof/link.py", line 314, in raise_with_op
reraise(exc_type, exc_value, exc_trace)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py", line 859, in __call__
outputs = self.fn()
File "/usr/local/lib/python2.7/dist-packages/theano/gof/op.py", line 912, in rval
r = p(n, [x[0] for x in i], o)
File "stackoverflow.py", line 17, in perform
f_to_int = theano.function([x], x)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/function.py", line 320, in function
output_keys=output_keys)
File "/usr/local/lib/python2.7/dist-packages/theano/compile/pfunc.py", line 390, in pfunc
for p in params]
File "/usr/local/lib/python2.7/dist-packages/theano/compile/pfunc.py", line 489, in _pfunc_param_to_in
raise TypeError('Unknown parameter type: %s' % type(param))
TypeError: Unknown parameter type: <type 'numpy.ndarray'>
Apply node that caused the error: IntOp(x)
Toposort index: 0
Inputs types: [TensorType(float64, matrix)]
Inputs shapes: [(2, 2)]
Inputs strides: [(16, 8)]
Inputs values: [array([[ 2., 4.],
[ 6., 8.]])]
Outputs clients: [['output']]
Backtrace when the node is created(use Theano flag traceback.limit=N to make it longer):
File "stackoverflow.py", line 30, in <module>
y = intOp(x)
File "/usr/local/lib/python2.7/dist-packages/theano/gof/op.py", line 611, in __call__
node = self.make_node(*inputs, **kwargs)
File "stackoverflow.py", line 11, in make_node
return theano.Apply(self, [x], [x.type()])
HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.
I'm surprised by this, especially the TypeError, as I thought I had converted the output_storage variable into a tensor but it appears to believe here that it is still an ndarray.
perform
method, you should do only numerical computation. However, ingrad
method, you should build symbolic graph. – Angilaangina