The shape of the decision functions are different because ovo
trains a classifier for each 2-pair class combination whereas ovr
trains one classifier for each class fitted against all other classes.
The best example I could find can be found here on http://scikit-learn.org:
SVC and NuSVC implement the “one-against-one” approach (Knerr et al.,
1990) for multi- class classification. If n_class
is the number of
classes, then n_class * (n_class - 1) / 2
classifiers are constructed
and each one trains data from two classes. To provide a consistent
interface with other classifiers, the decision_function_shape
option
allows to aggregate the results of the “one-against-one” classifiers
to a decision function of shape (n_samples, n_classes)
>>> X = [[0], [1], [2], [3]]
>>> Y = [0, 1, 2, 3]
>>> clf = svm.SVC(decision_function_shape='ovo')
>>> clf.fit(X, Y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovo', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes: 4*3/2 = 6
6
>>> clf.decision_function_shape = "ovr"
>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes
4
What does this mean in simple terms?
To understand what n_class * (n_class - 1) / 2
means, generate two-class combinations using itertools.combinations
.
def ovo_classifiers(classes):
import itertools
n_class = len(classes)
n = n_class * (n_class - 1) / 2
combos = itertools.combinations(classes, 2)
return (n, list(combos))
>>> ovo_classifiers(['a', 'b', 'c'])
(3.0, [('a', 'b'), ('a', 'c'), ('b', 'c')])
>>> ovo_classifiers(['a', 'b', 'c', 'd'])
(6.0, [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')])
Which estimator should be used for multi-label classification?
In your situation, you have a question with multiple tags (like here on StackOverflow). If you know your tags (classes) in-advance, I might suggest OneVsRestClassifier(LinearSVC())
but you could try DecisionTreeClassifier or RandomForestClassifier (I think):
import pandas as pd
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.svm import SVC, LinearSVC
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier
df = pd.DataFrame({
'Tags': [['python', 'pandas'], ['c#', '.net'], ['ruby'],
['python'], ['c#'], ['sklearn', 'python']],
'Questions': ['This is a post about python and pandas is great.',
'This is a c# post and i hate .net',
'What is ruby on rails?', 'who else loves python',
'where to learn c#', 'sklearn is a python package for machine learning']},
columns=['Questions', 'Tags'])
X = df['Questions']
mlb = MultiLabelBinarizer()
y = mlb.fit_transform(df['Tags'].values)
pipeline = Pipeline([
('vect', CountVectorizer(token_pattern='|'.join(mlb.classes_))),
('linear_svc', OneVsRestClassifier(LinearSVC()))
])
pipeline.fit(X, y)
final = pd.DataFrame(pipeline.predict(X), index=X, columns=mlb.classes_)
def predict(text):
return pd.DataFrame(pipeline.predict(text), index=text, columns=mlb.classes_)
test = ['is python better than c#', 'should i learn c#',
'should i learn sklearn or tensorflow',
'ruby or c# i am a dinosaur',
'is .net still relevant']
print(predict(test))
Output:
.net c# pandas python ruby sklearn
is python better than c# 0 1 0 1 0 0
should i learn c# 0 1 0 0 0 0
should i learn sklearn or tensorflow 0 0 0 0 0 1
ruby or c# i am a dinosaur 0 1 0 0 1 0
is .net still relevant 1 0 0 0 0 0