inputs = Input((img_height, img_width, img_ch))
conv1 = Conv2D(n_filters, (k, k), padding=padding)(inputs)
conv1 = BatchNormalization(scale=False, axis=3)(conv1)
conv1 = Activation('relu')(conv1)
conv1 = Conv2D(n_filters, (k, k), padding=padding)(conv1)
conv1 = BatchNormalization(scale=False, axis=3)(conv1)
conv1 = Activation('relu')(conv1)
pool1 = MaxPooling2D(pool_size=(s, s))(conv1)
What is the meaning of (axis =3) in the BatchNormalization
I read keras documentation but I coudln't understand it, can any one explain what does axis means?