i am trying my first time to get a keras-tuner tuned deep learning model. My tuning code goes like below:
def build_model_test(hp):
model = models.Sequential()
model.add(layers.InputLayer(input_shape=(100,28)))
model.add(layers.Dense(28,activation = 'relu'))
model.add(BatchNormalization(momentum = 0.99))
model.add(Dropout(hp.Float('dropout', 0, 0.5, step=0.1, default=0.5)))
model.add(layers.Conv1D(filters=hp.Int(
'num_filters',
16, 128,
step=16
),kernel_size=3,strides=1,padding='same',activation='relu'))
model.add(BatchNormalization(momentum = 0.99))
model.add(Dropout(hp.Float('dropout', 0, 0.5, step=0.1, default=0.5)))
model.add(layers.Conv1D(filters=hp.Int(
'num_filters',
16, 128,
step=16
),kernel_size=3,strides=1,padding='same',activation='relu'))
model.add(BatchNormalization(momentum = 0.99))
model.add(Dropout(hp.Float('dropout', 0, 0.5, step=0.1, default=0.5)))
model.add(layers.Conv1D(filters=hp.Int(
'num_filters',
16, 128,
step=16
),kernel_size=3,strides=1,padding='same',activation='relu'))
model.add(BatchNormalization(momentum = 0.99))
model.add(Dropout(hp.Float('dropout', 0, 0.5, step=0.1, default=0.5)))
model.add(layers.Dense(units=hp.Int('units',min_value=16,max_value=512,step=32,default=128),activation = 'relu'))
model.add(Dropout(hp.Float('dropout', 0, 0.5, step=0.1, default=0.5)))
model.add(layers.Dense(1, activation = 'linear'))
model.compile(
optimizer='adam',
loss=['mean_squared_error'],
metrics=[tf.keras.metrics.RootMeanSquaredError()]
)
return model
tuner = RandomSearch(
build_model_test,
objective='mean_squared_error',
max_trials=20,
executions_per_trial=3,
directory='my_dir',
project_name='helloworld')
x_train,x_test=dataframes[0:734,:,:],dataframes[734:1100,:,:]
y_train,y_test=target_fx[0:734,:,:],target_fx[734:1100,:,:]
tuner.search(x_train, y_train,
epochs=20,
validation_data=(x_test, y_test))
models = tuner.get_best_models(num_models=1)
but as soon as the 20th epoch arrives it prints this error
ValueError Traceback (most recent call last)
<ipython-input-59-997de3dfa9e5> in <module>
52 tuner.search(x_train, y_train,
53 epochs=20,
---> 54 validation_data=(x_test, y_test))
55
56 models = tuner.get_best_models(num_models=1)
~\Anaconda3\envs\deeplearning\lib\site-packages\kerastuner\engine\base_tuner.py in search(self, *fit_args, **fit_kwargs)
128
129 self.on_trial_begin(trial)
--> 130 self.run_trial(trial, *fit_args, **fit_kwargs)
131 self.on_trial_end(trial)
132 self.on_search_end()
~\Anaconda3\envs\deeplearning\lib\site-packages\kerastuner\engine\multi_execution_tuner.py in run_trial(self, trial, *fit_args, **fit_kwargs)
107 averaged_metrics[metric] = np.mean(execution_values)
108 self.oracle.update_trial(
--> 109 trial.trial_id, metrics=averaged_metrics, step=self._reported_step)
110
111 def _configure_tensorboard_dir(self, callbacks, trial_id, execution=0):
~\Anaconda3\envs\deeplearning\lib\site-packages\kerastuner\engine\oracle.py in update_trial(self, trial_id, metrics, step)
182
183 trial = self.trials[trial_id]
--> 184 self._check_objective_found(metrics)
185 for metric_name, metric_value in metrics.items():
186 if not trial.metrics.exists(metric_name):
~\Anaconda3\envs\deeplearning\lib\site-packages\kerastuner\engine\oracle.py in _check_objective_found(self, metrics)
351 'Objective value missing in metrics reported to the '
352 'Oracle, expected: {}, found: {}'.format(
--> 353 objective_names, metrics.keys()))
354
355 def _get_trial_dir(self, trial_id):
ValueError: Objective value missing in metrics reported to the Oracle, expected: ['mean_squared_error'], found: dict_keys(['loss', 'root_mean_squared_error', 'val_loss', 'val_root_mean_squared_error'])
which i do not get since i have specified to the model as mean squared error to follow, do you know what commands should i change to get the result i want?
Also can i call early stopping in the keras-tuner?