How do I read an entire InputStream
into a byte array?
You can use Apache Commons IO to handle this and similar tasks.
The IOUtils
type has a static method to read an InputStream
and return a byte[]
.
InputStream is;
byte[] bytes = IOUtils.toByteArray(is);
Internally this creates a ByteArrayOutputStream
and copies the bytes to the output, then calls toByteArray()
. It handles large files by copying the bytes in blocks of 4KiB.
FastArrayList
or their soft & weak reference Maps and come back to tell me how "well-tested" this library is. It's a pile of rubbish –
Prosthetics InputStream is;
byte[] filedata=ByteStreams.toByteArray(is);
–
Aq go and have a look at Apache commons stuff like FastArrayList or their soft & weak reference Maps and come back to tell me how "well-tested" this library is
... that's like saying "taste those brussel sprouts and tell me how good these tomatoes are". If I add these tomatoes to my dish, taste test it, like it and everyone else apparently likes it too, then what do I care of the brussel sprouts from the same grocer are ka-ka ? –
Dictionary IOUtils.toByteArray(InputStream)
only copies in blocks of 4KB, not 4MB. In IOUtils.java the block size is defined as private static final int DEFAULT_BUFFER_SIZE = 1024 * 4
. –
Ravine You need to read each byte from your InputStream
and write it to a ByteArrayOutputStream
.
You can then retrieve the underlying byte array by calling toByteArray()
:
InputStream is = ...
ByteArrayOutputStream buffer = new ByteArrayOutputStream();
int nRead;
byte[] data = new byte[16384];
while ((nRead = is.read(data, 0, data.length)) != -1) {
buffer.write(data, 0, nRead);
}
return buffer.toByteArray();
Finally, after twenty years, there’s a simple solution without the need for a 3rd party library, thanks to Java 9:
InputStream is;
…
byte[] array = is.readAllBytes();
Note also the convenience methods readNBytes(byte[] b, int off, int len)
and transferTo(OutputStream)
addressing recurring needs.
InputStream
override readAllBytes()
or readNBytes
? –
Tybalt Use vanilla Java's DataInputStream
and its readFully
Method (exists since at least Java 1.4):
...
byte[] bytes = new byte[(int) file.length()];
DataInputStream dis = new DataInputStream(new FileInputStream(file));
dis.readFully(bytes);
...
There are some other flavors of this method, but I use this all the time for this use case.
DataInputStream
is primary used to read primary types (Longs, Shorts, Chars...) from a stream, so we can see this usage as a misuse of the class. –
Goodfornothing InputStream.read
. –
Imogeneimojean readFully
- the difference is in how they handle the stream ending before the number of bytes requested has been read. read
quits early and returns the number of bytes read, readFully
throws an exception. –
Imogeneimojean readFully
loops internally until it has the needed bytes. This is much more convenient than using read
where you have to write the loop yourself. So I would argue it is better. I just had this exact case happen to me with a GZIPInputStream where a read call would return with just a fraction of the needed bytes and readFully read them all. And in both cases I knew the length of the data to read from the stream. –
Cumquat If you happen to use Google Guava, it'll be as simple as using ByteStreams
:
byte[] bytes = ByteStreams.toByteArray(inputStream);
Safe solution (close streams correctly):
Java 9 and newer:
final byte[] bytes; try (inputStream) { bytes = inputStream.readAllBytes(); }
Java 8 and older:
public static byte[] readAllBytes(InputStream inputStream) throws IOException { final int bufLen = 4 * 0x400; // 4KB byte[] buf = new byte[bufLen]; int readLen; IOException exception = null; try { try (ByteArrayOutputStream outputStream = new ByteArrayOutputStream()) { while ((readLen = inputStream.read(buf, 0, bufLen)) != -1) outputStream.write(buf, 0, readLen); return outputStream.toByteArray(); } } catch (IOException e) { exception = e; throw e; } finally { if (exception == null) inputStream.close(); else try { inputStream.close(); } catch (IOException e) { exception.addSuppressed(e); } } }
Kotlin (when Java 9+ isn't accessible):
@Throws(IOException::class) fun InputStream.readAllBytes(): ByteArray { val bufLen = 4 * 0x400 // 4KB val buf = ByteArray(bufLen) var readLen: Int = 0 ByteArrayOutputStream().use { o -> this.use { i -> while (i.read(buf, 0, bufLen).also { readLen = it } != -1) o.write(buf, 0, readLen) } return o.toByteArray() } }
To avoid nested
use
see here.
Scala (when Java 9+ isn't accessible) (By @Joan. Thx):
def readAllBytes(inputStream: InputStream): Array[Byte] = Stream.continually(inputStream.read).takeWhile(_ != -1).map(_.toByte).toArray
ByteArrayOutputStream
? This is not proper, and implies to people reading the code that it needs to be closed, though closing a ByteArrayOutputStream
does nothing. In fact, that entire try
where the ByteArrayOutputStream
is declared should be rewritten. There's no need for a try
block there... –
Upwind As always, also Spring framework (spring-core since 3.2.2) has something for you: StreamUtils.copyToByteArray()
public static byte[] getBytesFromInputStream(InputStream is) throws IOException {
ByteArrayOutputStream os = new ByteArrayOutputStream();
byte[] buffer = new byte[0xFFFF];
for (int len = is.read(buffer); len != -1; len = is.read(buffer)) {
os.write(buffer, 0, len);
}
return os.toByteArray();
}
In-case someone is still looking for a solution without dependency and If you have a file.
DataInputStream
byte[] data = new byte[(int) file.length()];
DataInputStream dis = new DataInputStream(new FileInputStream(file));
dis.readFully(data);
dis.close();
ByteArrayOutputStream
InputStream is = new FileInputStream(file);
ByteArrayOutputStream buffer = new ByteArrayOutputStream();
int nRead;
byte[] data = new byte[(int) file.length()];
while ((nRead = is.read(data, 0, data.length)) != -1) {
buffer.write(data, 0, nRead);
}
RandomAccessFile
RandomAccessFile raf = new RandomAccessFile(file, "r");
byte[] data = new byte[(int) raf.length()];
raf.readFully(data);
Do you really need the image as a byte[]
? What exactly do you expect in the byte[]
- the complete content of an image file, encoded in whatever format the image file is in, or RGB pixel values?
Other answers here show you how to read a file into a byte[]
. Your byte[]
will contain the exact contents of the file, and you'd need to decode that to do anything with the image data.
Java's standard API for reading (and writing) images is the ImageIO API, which you can find in the package javax.imageio
. You can read in an image from a file with just a single line of code:
BufferedImage image = ImageIO.read(new File("image.jpg"));
This will give you a BufferedImage
, not a byte[]
. To get at the image data, you can call getRaster()
on the BufferedImage
. This will give you a Raster
object, which has methods to access the pixel data (it has several getPixel()
/ getPixels()
methods).
Lookup the API documentation for javax.imageio.ImageIO
, java.awt.image.BufferedImage
, java.awt.image.Raster
etc.
ImageIO supports a number of image formats by default: JPEG, PNG, BMP, WBMP and GIF. It's possible to add support for more formats (you'd need a plug-in that implements the ImageIO service provider interface).
See also the following tutorial: Working with Images
If you don't want to use the Apache commons-io library, this snippet is taken from the sun.misc.IOUtils class. It's nearly twice as fast as the common implementation using ByteBuffers:
public static byte[] readFully(InputStream is, int length, boolean readAll)
throws IOException {
byte[] output = {};
if (length == -1) length = Integer.MAX_VALUE;
int pos = 0;
while (pos < length) {
int bytesToRead;
if (pos >= output.length) { // Only expand when there's no room
bytesToRead = Math.min(length - pos, output.length + 1024);
if (output.length < pos + bytesToRead) {
output = Arrays.copyOf(output, pos + bytesToRead);
}
} else {
bytesToRead = output.length - pos;
}
int cc = is.read(output, pos, bytesToRead);
if (cc < 0) {
if (readAll && length != Integer.MAX_VALUE) {
throw new EOFException("Detect premature EOF");
} else {
if (output.length != pos) {
output = Arrays.copyOf(output, pos);
}
break;
}
}
pos += cc;
}
return output;
}
ByteArrayOutputStream out = new ByteArrayOutputStream();
byte[] buffer = new byte[1024];
while (true) {
int r = in.read(buffer);
if (r == -1) break;
out.write(buffer, 0, r);
}
byte[] ret = out.toByteArray();
Input Stream is ...
ByteArrayOutputStream bos = new ByteArrayOutputStream();
int next = in.read();
while (next > -1) {
bos.write(next);
next = in.read();
}
bos.flush();
byte[] result = bos.toByteArray();
bos.close();
InputStream
in a BufferedInputStream
before that code would reduce the OS-calls and mitigate the performance drawbacks significantly, that code will still do unnecessary manual copying work from one buffer to another. –
Tybalt @Adamski: You can avoid buffer entirely.
Code copied from http://www.exampledepot.com/egs/java.io/File2ByteArray.html (Yes, it is very verbose, but needs half the size of memory as the other solution.)
// Returns the contents of the file in a byte array.
public static byte[] getBytesFromFile(File file) throws IOException {
InputStream is = new FileInputStream(file);
// Get the size of the file
long length = file.length();
// You cannot create an array using a long type.
// It needs to be an int type.
// Before converting to an int type, check
// to ensure that file is not larger than Integer.MAX_VALUE.
if (length > Integer.MAX_VALUE) {
// File is too large
}
// Create the byte array to hold the data
byte[] bytes = new byte[(int)length];
// Read in the bytes
int offset = 0;
int numRead = 0;
while (offset < bytes.length
&& (numRead=is.read(bytes, offset, bytes.length-offset)) >= 0) {
offset += numRead;
}
// Ensure all the bytes have been read in
if (offset < bytes.length) {
throw new IOException("Could not completely read file "+file.getName());
}
// Close the input stream and return bytes
is.close();
return bytes;
}
is.close()
if offset < bytes.length
or the InputStream
will not be closed if that exception is thrown. –
Landbert Java 9 will give you finally a nice method:
InputStream in = ...;
ByteArrayOutputStream bos = new ByteArrayOutputStream();
in.transferTo( bos );
byte[] bytes = bos.toByteArray();
InputStram.readAllBytes()
that is one-liner? –
Kitchenmaid ByteArrayOutputStream
for sure, followed by a full copy of the data. –
Belita We are seeing some delay for few AWS transaction, while converting S3 object to ByteArray.
Note: S3 Object is PDF document (max size is 3 mb).
We are using the option #1 (org.apache.commons.io.IOUtils) to convert the S3 object to ByteArray. We have noticed S3 provide the inbuild IOUtils method to convert the S3 object to ByteArray, we are request you to confirm what is the best way to convert the S3 object to ByteArray to avoid the delay.
Option #1:
import org.apache.commons.io.IOUtils;
is = s3object.getObjectContent();
content =IOUtils.toByteArray(is);
Option #2:
import com.amazonaws.util.IOUtils;
is = s3object.getObjectContent();
content =IOUtils.toByteArray(is);
Also let me know if we have any other better way to convert the s3 object to bytearray
I know it's too late but here I think is cleaner solution that's more readable...
/**
* method converts {@link InputStream} Object into byte[] array.
*
* @param stream the {@link InputStream} Object.
* @return the byte[] array representation of received {@link InputStream} Object.
* @throws IOException if an error occurs.
*/
public static byte[] streamToByteArray(InputStream stream) throws IOException {
byte[] buffer = new byte[1024];
ByteArrayOutputStream os = new ByteArrayOutputStream();
int line = 0;
// read bytes from stream, and store them in buffer
while ((line = stream.read(buffer)) != -1) {
// Writes bytes from byte array (buffer) into output stream.
os.write(buffer, 0, line);
}
stream.close();
os.flush();
os.close();
return os.toByteArray();
}
I tried to edit @numan's answer with a fix for writing garbage data but edit was rejected. While this short piece of code is nothing brilliant I can't see any other better answer. Here's what makes most sense to me:
ByteArrayOutputStream out = new ByteArrayOutputStream();
byte[] buffer = new byte[1024]; // you can configure the buffer size
int length;
while ((length = in.read(buffer)) != -1) out.write(buffer, 0, length); //copy streams
in.close(); // call this in a finally block
byte[] result = out.toByteArray();
btw ByteArrayOutputStream need not be closed. try/finally constructs omitted for readability
See the InputStream.available()
documentation:
It is particularly important to realize that you must not use this method to size a container and assume that you can read the entirety of the stream without needing to resize the container. Such callers should probably write everything they read to a ByteArrayOutputStream and convert that to a byte array. Alternatively, if you're reading from a file, File.length returns the current length of the file (though assuming the file's length can't change may be incorrect, reading a file is inherently racy).
Wrap it in a DataInputStream if that is off the table for some reason, just use read to hammer on it until it gives you a -1 or the entire block you asked for.
public int readFully(InputStream in, byte[] data) throws IOException {
int offset = 0;
int bytesRead;
boolean read = false;
while ((bytesRead = in.read(data, offset, data.length - offset)) != -1) {
read = true;
offset += bytesRead;
if (offset >= data.length) {
break;
}
}
return (read) ? offset : -1;
}
Java 8 way (thanks to BufferedReader and Adam Bien)
private static byte[] readFully(InputStream input) throws IOException {
try (BufferedReader buffer = new BufferedReader(new InputStreamReader(input))) {
return buffer.lines().collect(Collectors.joining("\n")).getBytes(<charset_can_be_specified>);
}
}
Note that this solution wipes carriage return ('\r') and can be inappropriate.
String
. OP is asking for byte[]
. –
Pyroelectric \r
that could be a problem. This method converts the bytes to characters and back again (using the default character set for InputStreamReader). Any bytes which aren't valid in the default character encoding (say, -1 for UTF-8 on Linux) will be corrupted, potentially even changing the number of bytes. –
Mislike Here is an optimized version, that tries to avoid copying data bytes as much as possible:
private static byte[] loadStream (InputStream stream) throws IOException {
int available = stream.available();
int expectedSize = available > 0 ? available : -1;
return loadStream(stream, expectedSize);
}
private static byte[] loadStream (InputStream stream, int expectedSize) throws IOException {
int basicBufferSize = 0x4000;
int initialBufferSize = (expectedSize >= 0) ? expectedSize : basicBufferSize;
byte[] buf = new byte[initialBufferSize];
int pos = 0;
while (true) {
if (pos == buf.length) {
int readAhead = -1;
if (pos == expectedSize) {
readAhead = stream.read(); // test whether EOF is at expectedSize
if (readAhead == -1) {
return buf;
}
}
int newBufferSize = Math.max(2 * buf.length, basicBufferSize);
buf = Arrays.copyOf(buf, newBufferSize);
if (readAhead != -1) {
buf[pos++] = (byte)readAhead;
}
}
int len = stream.read(buf, pos, buf.length - pos);
if (len < 0) {
return Arrays.copyOf(buf, pos);
}
pos += len;
}
}
The other case to get correct byte array via stream, after send request to server and waiting for the response.
/**
* Begin setup TCP connection to PC app
* to open integrate connection between mobile app and pc app (or mobile app)
*/
mSocket = new Socket(IP, port);
// mSocket.setSoTimeout(30000);
DataOutputStream mDos = new DataOutputStream(mSocket.getOutputStream());
String str = "MobileRequest#" + params[0] + "#<EOF>";
mDos.write(str.getBytes());
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
/* Since data are accepted as byte, all of them will be collected in the
following byte array which initialised with accepted data length. */
DataInputStream mDis = new DataInputStream(mSocket.getInputStream());
byte[] data = new byte[mDis.available()];
// Collecting data into byte array
for (int i = 0; i < data.length; i++)
data[i] = mDis.readByte();
// Converting collected data in byte array into String.
String RESPONSE = new String(data);
You're doing an extra copy if you use ByteArrayOutputStream. If you know the length of the stream before you start reading it (e.g. the InputStream is actually a FileInputStream, and you can call file.length() on the file, or the InputStream is a zipfile entry InputStream, and you can call zipEntry.length()), then it's far better to write directly into the byte[] array -- it uses half the memory, and saves time.
// Read the file contents into a byte[] array
byte[] buf = new byte[inputStreamLength];
int bytesRead = Math.max(0, inputStream.read(buf));
// If needed: for safety, truncate the array if the file may somehow get
// truncated during the read operation
byte[] contents = bytesRead == inputStreamLength ? buf
: Arrays.copyOf(buf, bytesRead);
N.B. the last line above deals with files getting truncated while the stream is being read, if you need to handle that possibility, but if the file gets longer while the stream is being read, the contents in the byte[] array will not be lengthened to include the new file content, the array will simply be truncated to the old length inputStreamLength.
This works for me,
if(inputStream != null){
ByteArrayOutputStream contentStream = readSourceContent(inputStream);
String stringContent = contentStream.toString();
byte[] byteArr = encodeString(stringContent);
}
readSourceContent()
public static ByteArrayOutputStream readSourceContent(InputStream inputStream) throws IOException {
ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
int nextChar;
try {
while ((nextChar = inputStream.read()) != -1) {
outputStream.write(nextChar);
}
outputStream.flush();
} catch (IOException e) {
throw new IOException("Exception occurred while reading content", e);
}
return outputStream;
}
encodeString()
public static byte[] encodeString(String content) throws UnsupportedEncodingException {
byte[] bytes;
try {
bytes = content.getBytes();
} catch (UnsupportedEncodingException e) {
String msg = ENCODING + " is unsupported encoding type";
log.error(msg,e);
throw new UnsupportedEncodingException(msg, e);
}
return bytes;
}
String
and then to byte[]
(which might mess with binary data)? ByteArrayOutputStream
has .toByteArray()
: docs.oracle.com/javase/7/docs/api/java/io/… –
Spancake I use this.
public static byte[] toByteArray(InputStream is) throws IOException {
ByteArrayOutputStream output = new ByteArrayOutputStream();
try {
byte[] b = new byte[4096];
int n = 0;
while ((n = is.read(b)) != -1) {
output.write(b, 0, n);
}
return output.toByteArray();
} finally {
output.close();
}
}
This is my copy-paste version:
@SuppressWarnings("empty-statement")
public static byte[] inputStreamToByte(InputStream is) throws IOException {
if (is == null) {
return null;
}
// Define a size if you have an idea of it.
ByteArrayOutputStream r = new ByteArrayOutputStream(2048);
byte[] read = new byte[512]; // Your buffer size.
for (int i; -1 != (i = is.read(read)); r.write(read, 0, i));
is.close();
return r.toByteArray();
}
Java 7 and later:
import sun.misc.IOUtils;
...
InputStream in = ...;
byte[] buf = IOUtils.readFully(in, -1, false);
sun.misc.IOUtils
is not “Java 7”. It’s a proprietary, implementation specific class that may not be present in other JRE implementations and can disappear without any warning in one of the next releases. –
Tybalt You can try Cactoos:
byte[] array = new BytesOf(stream).bytes();
Solution in Kotlin (will work in Java too, of course), which includes both cases of when you know the size or not:
fun InputStream.readBytesWithSize(size: Long): ByteArray? {
return when {
size < 0L -> this.readBytes()
size == 0L -> ByteArray(0)
size > Int.MAX_VALUE -> null
else -> {
val sizeInt = size.toInt()
val result = ByteArray(sizeInt)
readBytesIntoByteArray(result, sizeInt)
result
}
}
}
fun InputStream.readBytesIntoByteArray(byteArray: ByteArray,bytesToRead:Int=byteArray.size) {
var offset = 0
while (true) {
val read = this.read(byteArray, offset, bytesToRead - offset)
if (read == -1)
break
offset += read
if (offset >= bytesToRead)
break
}
}
If you know the size, it saves you on having double the memory used compared to the other solutions (in a brief moment, but still could be useful). That's because you have to read the entire stream to the end, and then convert it to a byte array (similar to ArrayList which you convert to just an array).
So, if you are on Android, for example, and you got some Uri to handle, you can try to get the size using this:
fun getStreamLengthFromUri(context: Context, uri: Uri): Long {
context.contentResolver.query(uri, arrayOf(MediaStore.MediaColumns.SIZE), null, null, null)?.use {
if (!it.moveToNext())
return@use
val fileSize = it.getLong(it.getColumnIndex(MediaStore.MediaColumns.SIZE))
if (fileSize > 0)
return fileSize
}
//if you wish, you can also get the file-path from the uri here, and then try to get its size, using this: https://mcmap.net/q/17249/-get-file-path-from-uri
FileUtilEx.getFilePathFromUri(context, uri, false)?.use {
val file = it.file
val fileSize = file.length()
if (fileSize > 0)
return fileSize
}
context.contentResolver.openInputStream(uri)?.use { inputStream ->
if (inputStream is FileInputStream)
return inputStream.channel.size()
else {
var bytesCount = 0L
while (true) {
val available = inputStream.available()
if (available == 0)
break
val skip = inputStream.skip(available.toLong())
if (skip < 0)
break
bytesCount += skip
}
if (bytesCount > 0L)
return bytesCount
}
}
return -1L
}
You can use cactoos library with provides reusable object-oriented Java components. OOP is emphasized by this library, so no static methods, NULLs, and so on, only real objects and their contracts (interfaces). A simple operation like reading InputStream, can be performed like that
final InputStream input = ...;
final Bytes bytes = new BytesOf(input);
final byte[] array = bytes.asBytes();
Assert.assertArrayEquals(
array,
new byte[]{65, 66, 67}
);
Having a dedicated type Bytes
for working with data structure byte[]
enables us to use OOP tactics for solving tasks at hand.
Something that a procedural "utility" method will forbid us to do.
For example, you need to enconde bytes you've read from this InputStream
to Base64.
In this case you will use Decorator pattern and wrap Bytes object within implementation for Base64.
cactoos already provides such implementation:
final Bytes encoded = new BytesBase64(
new BytesOf(
new InputStreamOf("XYZ")
)
);
Assert.assertEquals(new TextOf(encoded).asString(), "WFla");
You can decode them in the same manner, by using Decorator pattern
final Bytes decoded = new Base64Bytes(
new BytesBase64(
new BytesOf(
new InputStreamOf("XYZ")
)
)
);
Assert.assertEquals(new TextOf(decoded).asString(), "XYZ");
Whatever your task is you will be able to create own implementation of Bytes
to solve it.
For Android developers dealing with the inter-op between Java and Kotlin:
byte[] myByteArray = ByteStreamsKt.readBytes(fileInputStream);
/*InputStream class_InputStream = null;
I am reading class from DB
class_InputStream = rs.getBinaryStream(1);
Your Input stream could be from any source
*/
int thisLine;
ByteArrayOutputStream bos = new ByteArrayOutputStream();
while ((thisLine = class_InputStream.read()) != -1) {
bos.write(thisLine);
}
bos.flush();
byte [] yourBytes = bos.toByteArray();
/*Don't forget in the finally block to close ByteArrayOutputStream & InputStream
In my case the IS is from resultset so just closing the rs will do it*/
if (bos != null){
bos.close();
}
Below Codes
public static byte[] serializeObj(Object obj) throws IOException {
ByteArrayOutputStream baOStream = new ByteArrayOutputStream();
ObjectOutputStream objOStream = new ObjectOutputStream(baOStream);
objOStream.writeObject(obj);
objOStream.flush();
objOStream.close();
return baOStream.toByteArray();
}
OR
BufferedImage img = ...
ByteArrayOutputStream baos = new ByteArrayOutputStream(1000);
ImageIO.write(img, "jpeg", baos);
baos.flush();
byte[] result = baos.toByteArray();
baos.close();
© 2022 - 2024 — McMap. All rights reserved.