I am following the official TensorFlow with Keras tutorial and I got stuck here: Predict house prices: regression - Create the model
Why is an activation function used for a task where a continuous value is predicted?
The code is:
def build_model():
model = keras.Sequential([
keras.layers.Dense(64, activation=tf.nn.relu,
input_shape=(train_data.shape[1],)),
keras.layers.Dense(64, activation=tf.nn.relu),
keras.layers.Dense(1)
])
optimizer = tf.train.RMSPropOptimizer(0.001)
model.compile(loss='mse', optimizer=optimizer, metrics=['mae'])
return model