I have been given an exercise to solve the zebra puzzle using a constraint solver of my choice, and I tried it using the Prolog clpfd library.
I am aware that there are other more idiomatic ways to solve this problem in Prolog, but this question is specifically about the clpfd
package!
So the specific variation of the puzzle (given that there are many of them) I'm trying to solve is this one:
There are five houses
- The Englishman lives in the red house
- The Swedish own a dog
- The Danish likes to drink tea
- The green house is left to the white house
- The owner of the green house drinks coffee
- The person that smokes Pall Mall owns a bird
- Milk is drunk in the middle house
- The owner of the yellow house smokes Dunhill
- The norwegian lives in the first house
- The marlboro smoker lives next to the cat owner
- The horse owner lives next to the person who smokes dunhill
- The winfield smoker likes to drink beer
- The norwegian lives next to the blue house
- The german smokes rothmanns
- The marlboro smoker has a neighbor who drinks water
I tried to solve it with the following approach:
Each attribute a house can have is modeled as a variable, e.g. "British", "Dog", "Green", etc. The attributes can take values from 1 to 5, depending on the house in which they occur, e.g. if the variable "Dog" takes the value 3, the dog lives in the third house.
This approach makes it easy to model neighbor constraints like this:
def neighbor(X, Y) :-
(X #= Y-1) #\/ (X #= Y+1).
But somehow, the clpfd
package does not yield a solution, even though (IMO) the problem is modeled correctly (I used the exact same model with the Choco constraint solver and the result was correct).
Here is the complete code:
:- use_module(library(clpfd)).
neighbor(X, Y) :-
(X #= (Y - 1)) #\/ (X #= (Y + 1)).
solve([British, Swedish, Danish, Norwegian, German], Fish) :-
Nationalities = [British, Swedish, Danish, Norwegian, German],
Colors = [Red, Green, Blue, White, Yellow],
Beverages = [Tea, Coffee, Milk, Beer, Water],
Cigarettes = [PallMall, Marlboro, Dunhill, Winfield, Rothmanns],
Pets = [Dog, Bird, Cat, Horse, Fish],
all_different(Nationalities),
all_different(Colors),
all_different(Beverages),
all_different(Cigarettes),
all_different(Pets),
Nationalities ins 1..5,
Colors ins 1..5,
Beverages ins 1..5,
Cigarettes ins 1..5,
Pets ins 1..5,
British #= Red, % Hint 1
Swedish #= Dog, % Hint 2
Danish #= Tea, % Hint 3
Green #= White - 1 , % Hint 4
Green #= Coffee, % Hint 5,
PallMall #= Bird, % Hint 6
Milk #= 3, % Hint 7
Yellow #= Dunhill, % Hint 8,
Norwegian #= 1, % Hint 9
neighbor(Marlboro, Cat), % Hint 10
neighbor(Horse, Dunhill), % Hint 11
Winfield #= Beer, % Hint 12
neighbor(Norwegian, Blue), % Hint 13
German #= Rothmanns, % Hint 14,
neighbor(Marlboro, Water). % Hint 15
Did I misunderstand a concept within clpfd
, or am I simply missing something obvious here? In case it helps, here you can find the same approach implemented using Choco and Scala.
Edit: The reason why I believe that the solver isn't able to solve the problem ist that it never comes up with definite values for the variables, but only with ranges, e.g. "Fish 1..3\/5".
V in -1\/1
but permitting expressions for the first argument would make it defaulty. – Ammerman