This post is closely related to another one I posted some days ago. This time, I wrote a simple code that just adds a pair of arrays of elements, multiplies the result by the values in another array and stores it in a forth array, all variables floating point double precision typed.
I made two versions of that code: one with SSE instructions, using calls to and another one without them I then compiled them with gcc and -O0 optimization level. I write them below:
// SSE VERSION
#define N 10000
#define NTIMES 100000
#include <time.h>
#include <stdio.h>
#include <xmmintrin.h>
#include <pmmintrin.h>
double a[N] __attribute__((aligned(16)));
double b[N] __attribute__((aligned(16)));
double c[N] __attribute__((aligned(16)));
double r[N] __attribute__((aligned(16)));
int main(void){
int i, times;
for( times = 0; times < NTIMES; times++ ){
for( i = 0; i <N; i+= 2){
__m128d mm_a = _mm_load_pd( &a[i] );
_mm_prefetch( &a[i+4], _MM_HINT_T0 );
__m128d mm_b = _mm_load_pd( &b[i] );
_mm_prefetch( &b[i+4] , _MM_HINT_T0 );
__m128d mm_c = _mm_load_pd( &c[i] );
_mm_prefetch( &c[i+4] , _MM_HINT_T0 );
__m128d mm_r;
mm_r = _mm_add_pd( mm_a, mm_b );
mm_a = _mm_mul_pd( mm_r , mm_c );
_mm_store_pd( &r[i], mm_a );
}
}
}
//NO SSE VERSION
//same definitions as before
int main(void){
int i, times;
for( times = 0; times < NTIMES; times++ ){
for( i = 0; i < N; i++ ){
r[i] = (a[i]+b[i])*c[i];
}
}
}
When compiling them with -O0, gcc makes use of XMM/MMX registers and SSE intstructions, if not specifically given the -mno-sse (and others) options. I inspected the assembly code generated for the second code and I noticed that it makes use of movsd, addsd and mulsd instructions. So it makes use of SSE instructions but only of those that use the lowest part of the registers, if I am not wrong. The assembly code generated for the first C code made use, as expected, of the addp and mulpd instructions, though a pretty larger assembly code was generated.
Anyway, the first code should get better profit, as far as I know, of SIMD paradigm, since every iteration two result values are computed. Still that, the second code performs something such as a 25 per cent faster than the first one. I also made a test with single precision values and get similar results. What's the reason for that?