I use the HMeasure package to involve the LDA in my analysis about credit risk. I have 11000 obs and I've chosen age and income to develop the analysis. I don't know exactly how to interpret the R results of LDA. So, I don't know if I chosen the best variables according to credit risk. I show you below the code.
lda(default ~ ETA, data = train)
Prior probabilities of groups:
0 1
0.4717286 0.5282714
Group means:
ETA
0 34.80251
1 37.81549
Coefficients of linear discriminants:
LD1
ETA 0.1833161
lda(default~ ETA + Stipendio, train)
Call:
lda(default ~ ETA + Stipendio, data = train)
Prior probabilities of groups:
0 1
0.4717286 0.5282714
Group means:
ETA Stipendio
0 34.80251 1535.531
1 37.81549 1675.841
Coefficients of linear discriminants:
LD1
ETA 0.148374799
Stipendio 0.001445174
lda(default~ ETA, train)
ldaP <- predict(lda, data= test)
Where ETA = AGE and STIPENDIO =INCOME
Thanks a lot!