There are actually three questions bundled up here: (1) What is the impact of supporting multiple inheritance on orthogonality? (2) What is the impact of implementing multiple interfaces on orthogonality? (3) What is the difference between the two sorts of impact?
Firstly, let us get to grips with orthogonality. In The Art of Unix Programming, Eric Raymond explains that "In a purely orthogonal design, operations do not have side effects; each action (whether it's an API call, a macro invocation, or a language operation) changes just one thing without affecting others. There is one and only one way to change each property of whatever system you are controlling."
So, now look at question (1). C++ supports multiple inheritance, so a class in C++ could inherit from two classes that have the same operation but with two different effects. This has the potential to be non-orthogonal, but C++ requires you to state explicitly which parent class has the feature to be invoked. This will limit the operation to only one effect, so orthogonality is maintained. See Multiple inheritance.
And question (2). Java does not allow multiple inheritance. A class can only derive from one base class. Interfaces are used to encode similarities which the classes of various types share, but do not necessarily constitute a class relationship. Java classes can implement multiple interfaces but there is only one class doing the implementation, so there should only be one effect when a method is invoked. Even if a class implements two interfaces which both have a method with the same name and signature, it will implement both methods simultaneously, so there should only be one effect. See Java interface.
And finally question (3). The difference is that C++ and Java maintain orthogonality by different mechanisms: C++ by demanding the the parent is explicitly specified, so there will be no ambiguity in the effect; and Java by implementing similar methods simultaneously so there is only one effect.