MongoDB does not recover disk space when actually data size drops due to data deletion along with other causes. There's a decent explanation in the online docs:
Why are the files in my data directory larger than the data in my database?
The data files in your data directory, which is the /data/db directory
in default configurations, might be larger than the data set inserted
into the database. Consider the following possible causes:
Preallocated data files.
In the data directory, MongoDB preallocates data files to a particular
size, in part to prevent file system fragmentation. MongoDB names the
first data file .0, the next .1, etc. The
first file mongod allocates is 64 megabytes, the next 128 megabytes,
and so on, up to 2 gigabytes, at which point all subsequent files are
2 gigabytes. The data files include files with allocated space but
that hold no data. mongod may allocate a 1 gigabyte data file that may
be 90% empty. For most larger databases, unused allocated space is
small compared to the database.
On Unix-like systems, mongod preallocates an additional data file and
initializes the disk space to 0. Preallocating data files in the
background prevents significant delays when a new database file is
next allocated.
You can disable preallocation by setting preallocDataFiles to false.
However do not disable preallocDataFiles for production environments:
only use preallocDataFiles for testing and with small data sets where
you frequently drop databases.
On Linux systems you can use hdparm to get an idea of how costly
allocation might be:
time hdparm --fallocate $((1024*1024)) testfile
The oplog.
If this mongod is a member of a replica set, the data directory
includes the oplog.rs file, which is a preallocated capped collection
in the local database. The default allocation is approximately 5% of
disk space on 64-bit installations, see Oplog Sizing for more
information. In most cases, you should not need to resize the oplog.
However, if you do, see Change the Size of the Oplog.
The journal.
The data directory contains the journal files, which store write
operations on disk prior to MongoDB applying them to databases. See
Journaling Mechanics.
Empty records.
MongoDB maintains lists of empty records in data files when deleting
documents and collections. MongoDB can reuse this space, but will
never return this space to the operating system.
To de-fragment allocated storage, use compact, which de-fragments
allocated space. By de-fragmenting storage, MongoDB can effectively
use the allocated space. compact requires up to 2 gigabytes of extra
disk space to run. Do not use compact if you are critically low on
disk space.
Important
compact only removes fragmentation from MongoDB data files and does
not return any disk space to the operating system.
To reclaim deleted space, use repairDatabase, which rebuilds the
database which de-fragments the storage and may release space to the
operating system. repairDatabase requires up to 2 gigabytes of extra
disk space to run. Do not use repairDatabase if you are critically low
on disk space.
http://docs.mongodb.org/manual/faq/storage/
What they don't tell you are the two other ways to restore/recover disk space - mongodump/mongorestore as you did or adding a new member to the replica set with an empty disk so that it writes it's databsae files from scratch.
If you are interested in monitoring this, the db.stats() command returns a wealth of data on data, index, storage and file sizes:
http://docs.mongodb.org/manual/reference/command/dbStats/