Is it possible Rubik's cube to be efficiently solved by genetic algorithms?
What kind of chromosome encoding should be used? How the crossover and mutation should be done?
I am using this model of the cube:
#ifndef RUBIKSCUBE_H_INCLUDED
#define RUBIKSCUBE_H_INCLUDED
#include "Common.h"
#include "RubiksSide.h"
#include "RubiksColor.h"
#include "RotationDirection.h"
class RubiksCube {
private:
int top[3][3];
int left[3][3];
int right[3][3];
int front[3][3];
int back[3][3];
int down[3][3];
int (*sides[6])[3][3];
std::string result;
void spinSide(RubiksSide side) {
static int buffer[ 3 ];
if (side == TOP) {
for (int i = 0; i < 3; i++) {
buffer[i] = left[i][2];
}
for (int i = 0; i < 3; i++) {
left[i][2] = front[0][i];
}
for (int i = 0; i < 3; i++) {
front[0][i] = right[3 - i - 1][0];
}
for (int i = 0; i < 3; i++) {
right[i][0] = back[2][i];
}
for (int i = 0; i < 3; i++) {
back[2][3 - i - 1] = buffer[i];
}
} else if (side == LEFT) {
for (int i = 0; i < 3; i++) {
buffer[i] = down[i][2];
}
for (int i = 0; i < 3; i++) {
down[3 - i - 1][2] = front[i][0];
}
for (int i = 0; i < 3; i++) {
front[i][0] = top[i][0];
}
for (int i = 0; i < 3; i++) {
top[i][0] = back[i][0];
}
for (int i = 0; i < 3; i++) {
back[3 - i - 1][0] = buffer[i];
}
} else if (side == BACK) {
for (int i = 0; i < 3; i++) {
buffer[i] = down[0][i];
}
for (int i = 0; i < 3; i++) {
down[0][i] = left[0][i];
}
for (int i = 0; i < 3; i++) {
left[0][i] = top[0][i];
}
for (int i = 0; i < 3; i++) {
top[0][i] = right[0][i];
}
for (int i = 0; i < 3; i++) {
right[0][i] = buffer[i];
}
} else if (side == RIGHT) {
for (int i = 0; i < 3; i++) {
buffer[i] = down[i][0];
}
for (int i = 0; i < 3; i++) {
down[i][0] = back[3 - i - 1][2];
}
for (int i = 0; i < 3; i++) {
back[i][2] = top[i][2];
}
for (int i = 0; i < 3; i++) {
top[i][2] = front[i][2];
}
for (int i = 0; i < 3; i++) {
front[3 - i - 1][2] = buffer[i];
}
} else if (side == FRONT) {
for (int i = 0; i < 3; i++) {
buffer[i] = down[2][i];
}
for (int i = 0; i < 3; i++) {
down[2][i] = right[2][i];
}
for (int i = 0; i < 3; i++) {
right[2][i] = top[2][i];
}
for (int i = 0; i < 3; i++) {
top[2][i] = left[2][i];
}
for (int i = 0; i < 3; i++)
left[2][i] = buffer[i];
} else if (side == DOWN) {
for (int i = 0; i < 3; i++) {
buffer[i] = front[2][i];
}
for (int i = 0; i < 3; i++) {
front[2][i] = left[i][0];
}
for (int i = 0; i < 3; i++) {
left[i][0] = back[0][3 - i - 1];
}
for (int i = 0; i < 3; i++) {
back[0][i] = right[i][2];
}
for (int i = 0; i < 3; i++) {
right[3 - i - 1][2] = buffer[i];
}
}
}
void spinClockwise(int side[3][3], int times, RubiksSide index) {
static int buffer[3][3];
static int newarray[3][3];
if (times == 0) {
return;
}
/*
* Transponse.
*/
for (int j = 0; j < 3; j++) {
for (int i = 0; i < 3; i++) {
newarray[j][i] = side[i][j];
}
}
/*
* Rearrange.
*/
for (int i = 0; i < 3; i++) {
static int cache = 0;
cache = newarray[i][0];
newarray[i][0] = newarray[i][2];
newarray[i][2] = cache;
}
spinSide(index);
memcpy(buffer, newarray, sizeof(int)*3*3);
for (int t = 1; t < times; t++) {
for (int j = 0; j < 3; j++) {
for (int i = 0; i < 3; i++) {
newarray[j][i] = buffer[i][j];
}
}
for (int i = 0; i < 3; i++) {
static int cache = 0;
cache = newarray[i][0];
newarray[i][0] = newarray[i][2];
newarray[i][2] = cache;
}
spinSide(index);
memcpy(buffer, newarray, sizeof(int)*3*3);
}
memcpy(side, buffer, sizeof(int)*3*3);
}
double euclidean(const RubiksCube &cube) const {
double difference = 0.0;
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
difference += abs(top[i][j]-cube.top[i][j]);
difference += abs(left[i][j]-cube.left[i][j]);
difference += abs(right[i][j]-cube.right[i][j]);
difference += abs(front[i][j]-cube.front[i][j]);
difference += abs(back[i][j]-cube.back[i][j]);
difference += abs(down[i][j]-cube.down[i][j]);
}
}
return difference;
}
double colors(const RubiksCube &cube) const {
//TODO Change array with STL maps.
static const double coefficients[7][7] = {
{0, 0, 0, 0, 0, 0, 0},
{0, 1, 2, 2, 2, 2, 4},
{0, 2, 1, 2, 4, 2, 2},
{0, 2, 2, 1, 2, 4, 2},
{0, 2, 4, 2, 1, 2, 2},
{0, 2, 2, 4, 2, 1, 2},
{0, 4, 2, 2, 2, 2, 1},
};
double difference = 0.0;
/*
* Count matches for all sides.
*/
for(int s=0; s<6; s++) {
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
/*
* If colors are equal calculate distance.
*/
difference += coefficients[(*sides[s])[1][1]][(*sides[s])[i][j]];
}
}
}
return difference;
}
double hausdorff(const RubiksCube &cube) const {
long ha = 0;
long hb = 0;
long result = 0;
for(int m=0; m<3; m++) {
for(int n=0; n<3; n++) {
int distances[] = {0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
for(int i=0, d=0; i<3; i++) {
for(int j=0; j<3; j++) {
distances[d++] = abs(top[m][n]-cube.top[i][j]);
distances[d++] = abs(left[m][n]-cube.left[i][j]);
distances[d++] = abs(right[m][n]-cube.right[i][j]);
distances[d++] = abs(front[m][n]-cube.front[i][j]);
distances[d++] = abs(back[m][n]-cube.back[i][j]);
distances[d++] = abs(down[m][n]-cube.down[i][j]);
}
}
int min = distances[0];
for(int d=0; d<54; d++) {
if(distances[d] < min) {
min = distances[d];
}
}
if(min > ha) {
ha = min;
}
}
}
for(int m=0; m<3; m++) {
for(int n=0; n<3; n++) {
int distances[] = {0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
for(int i=0, d=0; i<3; i++) {
for(int j=0; j<3; j++) {
distances[d++] = abs(top[i][j]-cube.top[m][n]);
distances[d++] = abs(left[i][j]-cube.left[m][n]);
distances[d++] = abs(right[i][j]-cube.right[m][n]);
distances[d++] = abs(front[i][j]-cube.front[m][n]);
distances[d++] = abs(back[i][j]-cube.back[m][n]);
distances[d++] = abs(down[i][j]-cube.down[m][n]);
}
}
int min = distances[0];
for(int d=0; d<54; d++) {
if(distances[d] < min) {
min = distances[d];
}
}
if(min > hb) {
hb = min;
}
}
}
result = std::max(ha, hb);
return(result);
}
friend std::ostream& operator<< (std::ostream &out, const RubiksCube &cube);
public:
RubiksCube() {
reset();
sides[0] = ⊤
sides[1] = &left;
sides[2] = &right;
sides[3] = &front;
sides[4] = &back;
sides[5] = &down;
}
void reset() {
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
top[i][j] = GREEN;
left[i][j] = PURPLE;
right[i][j] = RED;
front[i][j] = WHITE;
back[i][j] = YELLOW;
down[i][j] = BLUE;
}
}
}
double compare(const RubiksCube &cube) const {
return euclidean(cube);
}
void callSpin(RubiksSide side, RotationDirection direction, int numberOfTimes) {
if (numberOfTimes < 0) {
numberOfTimes = -numberOfTimes;
if(direction == CLOCKWISE) {
direction = COUNTERCLOCKWISE;
} else if(direction == COUNTERCLOCKWISE) {
direction = CLOCKWISE;
}
}
numberOfTimes %= 4;
if (direction == CLOCKWISE) {
if (side == NONE) {
/*
* Do nothing.
*/
}
if (side == TOP) {
spinClockwise(top, numberOfTimes, TOP);
}
if (side == LEFT) {
spinClockwise(left, numberOfTimes, LEFT);
}
if (side == RIGHT) {
spinClockwise(right, numberOfTimes, RIGHT);
}
if (side == FRONT) {
spinClockwise(front, numberOfTimes, FRONT);
}
if (side == BACK) {
spinClockwise(back, numberOfTimes, BACK);
}
if (side == DOWN) {
spinClockwise(down, numberOfTimes, DOWN);
}
}
}
void execute(std::string commands) {
for(int i=0; i<commands.length(); i++) {
callSpin((RubiksSide)commands[i], CLOCKWISE, 1);
}
}
std::string shuffle(int numberOfMoves=0) {
std::string commands = "";
for(int i=0; i<numberOfMoves; i++) {
switch(rand()%6) {
case 0:
commands+=(char)TOP;
break;
case 1:
commands+=(char)LEFT;
break;
case 2:
commands+=(char)RIGHT;
break;
case 3:
commands+=(char)FRONT;
break;
case 4:
commands+=(char)BACK;
break;
case 5:
commands+=(char)DOWN;
break;
}
}
execute(commands);
return commands;
}
const std::string& toString() {
result = "";
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
result += std::to_string(top[i][j]) + " ";
}
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
result += std::to_string(left[i][j]) + " ";
}
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
result += std::to_string(right[i][j]) + " ";
}
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
result += std::to_string(front[i][j]) + " ";
}
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
result += std::to_string(back[i][j]) + " ";
}
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
result += std::to_string(down[i][j]) + " ";
}
}
/*
* Trim spaces.
*/
result.erase(result.size()-1, 1);
result += '\0';
return result;
}
void fromString(const char text[]) {
std::string buffer(text);
std::istringstream in(buffer);
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
in >> top[i][j];
}
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
in >> left[i][j];
}
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
in >> right[i][j];
}
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
in >> front[i][j];
}
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
in >> back[i][j];
}
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
in >> down[i][j];
}
}
}
};
std::ostream& operator<< (std::ostream &out, const RubiksCube &cube) {
for(int i=0; i<3; i++) {
out << " ";
for(int j=0; j<3; j++) {
out << cube.back[i][j] << " ";
}
out << std::endl;
}
for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) {
out << cube.left[i][j] << " ";
}
for(int j=0; j<3; j++) {
out << cube.top[i][j] << " ";
}
for(int j=0; j<3; j++) {
out << cube.right[i][j] << " ";
}
for(int j=0; j<3; j++) {
out << cube.down[i][j] << " ";
}
out << std::endl;
}
for(int i=0; i<3; i++) {
out << " ";
for(int j=0; j<3; j++) {
out << cube.front[i][j] << " ";
}
out << std::endl;
}
return out;
}
#endif
0 - Possible cube permutations
for every single run. There is no way a chromosome could become more fit. – Kurtzig