Fast numeric hash function for Spark (PySpark)
Asked Answered
L

1

6

I am trying to apply a hash function to short strings in a column of a PySpark DataFrame (running on an EMR cluster) and get a numeric value as a new column. CRC3 would do the job for example. I am aware of this question, but it's in Scala, I need a python version.

(By the way, I know about sha1 and sha2 in pyspark.sql.functions, but I need a faster hash function that just returns a number such as a checksum (but with as little collisions as possible).)

I have done the following:

import zlib
crc32 = udf(zlib.crc32)
df2= df.withColumn("crc32", crc32(col("Col1")))
df2.show()

And, I'm getting this error:

    Py4JJavaError: An error occurred while calling o873.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 37.0 failed 4 times, most recent failure: Lost task 0.3 in stage 37.0 (TID 45019, ip-172-31-58-134.ec2.internal, executor 181): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/worker.py", line 377, in main
    process()
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/worker.py", line 372, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/serializers.py", line 345, in dump_stream
    self.serializer.dump_stream(self._batched(iterator), stream)
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/serializers.py", line 141, in dump_stream
    for obj in iterator:
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/serializers.py", line 334, in _batched
    for item in iterator:
  File "<string>", line 1, in <lambda>
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/worker.py", line 85, in <lambda>
    return lambda *a: f(*a)
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/util.py", line 113, in wrapper
    return f(*args, **kwargs)
TypeError: a bytes-like object is required, not 'str'

    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:456)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:81)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:64)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:410)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:291)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:283)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:123)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2041)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2029)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2028)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2028)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:966)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:966)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2262)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2211)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2200)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:777)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:401)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3389)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
    at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3370)
    at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3369)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:2550)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2764)
    at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/worker.py", line 377, in main
    process()
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/worker.py", line 372, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/serializers.py", line 345, in dump_stream
    self.serializer.dump_stream(self._batched(iterator), stream)
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/serializers.py", line 141, in dump_stream
    for obj in iterator:
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/serializers.py", line 334, in _batched
    for item in iterator:
  File "<string>", line 1, in <lambda>
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/worker.py", line 85, in <lambda>
    return lambda *a: f(*a)
  File "/mnt1/yarn/usercache/zeppelin/appcache/application_1571175019959_0009/container_1571175019959_0009_01_000182/pyspark.zip/pyspark/util.py", line 113, in wrapper
    return f(*args, **kwargs)
TypeError: a bytes-like object is required, not 'str'

    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:456)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:81)
    at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$1.read(PythonUDFRunner.scala:64)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:410)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:291)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:283)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:123)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more

(<class 'py4j.protocol.Py4JJavaError'>, Py4JJavaError('An error occurred while calling o873.showString.\n', JavaObject id=o874), <traceback object at 0x7f69d17ff508>)
 SPARK JOB ERROR   

The original dataframe "df", is fine and df.show(), df.count() etc. work fine on it.

I appreciate any help.

Lease answered 16/10, 2019 at 15:43 Comment(0)
L
10

It turns our there is a "hash" function in pyspark.sql.functions that does the job that I needed. Posting here as answer in case any one else runs to the same problem:

import pyspark.sql.functions as F

df2= df.withColumn("hash", F.hash(col("Col1")))
df2.show()

Solves my problem.

Lease answered 16/10, 2019 at 15:54 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.