tl:dr; For 32 bits, use de Bruijn multiplication.
It's the "fastest" portable algorithm. It is substantially faster and more correct than all the other portable 32-bit MSB algorithms in this thread.
The de Bruijn algorithm also returns a correct result when the input is zero. The __builtin_clz and _BitScanReverse instructions return incorrect results when the input is zero.
On Windows x86-64, de Bruijn multiplication runs at a speed comparable to the equivalent (flawed) Windows function, with a performance difference of only around 3%.
Here's the code.
u32 msbDeBruijn32( u32 v )
{
static const int MultiplyDeBruijnBitPosition[32] =
{
0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31
};
v |= v >> 1; // first round down to one less than a power of 2
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return MultiplyDeBruijnBitPosition[( u32 )( v * 0x07C4ACDDU ) >> 27];
}
All the other answers in this thread either run much more poorly than their authors suggest, or don't calculate the result correctly, or both. Let's benchmark them all, and let's verify that they do what they claim to do.
Here's a simple C++11 harness to test all these implementations. It compiles clean on Visual Studio but should work on all modern compilers. It allows you to run the benchmark in performance mode (bVerifyResults = false) and in checking mode (bVerifyResults = true).
Here are the results in verification mode:
Verification failed for msbNative64: input was 0; output was 818af060; expected 0
Verification failed for msbFfs: input was 22df; output was 0; expected d
Verification failed for msbPerformanceJunkie32: input was 0; output was ffffffff; expected 0
Verification failed for msbNative32: input was 0; output was 9ab07060; expected 0
The "performance junkie" and the Microsoft native implementations do different things when the input is zero. msbPerformanceJunkie32 produces -1, and Microsoft's _BitScanReverse produces a random number, consistent with the underlying hardware instruction. Also the msbPerformanceJunkie32 implementation produces a result that is off by one from all the other answers.
Here are the results in performance mode, running on my i7-4600 laptop, compiled in release mode:
msbLoop64 took 2.56751 seconds
msbNative64 took 0.222197 seconds
msbLoop32 took 1.43456 seconds
msbFfs took 0.525097 seconds
msbPerformanceJunkie32 took 1.07939 seconds
msbDeBruijn32 took 0.224947 seconds
msbNative32 took 0.218275 seconds
The de Bruijn version beats the other implementations soundly because it is branchless, and therefore it runs well against inputs that produce an evenly distributed set of outputs. All the other versions are slower against arbitrary inputs because of the penalties of branch misprediction on modern CPUs. The smbFfs function produces incorrect results so it can be ignored.
Some of the implementations work on 32 bit inputs, and some work on 64 bit inputs. A template will help us compare apples to apples, regardless of the input size.
Here's the code. Download and run the benchmarks yourself if you like.
#include <iostream>
#include <chrono>
#include <random>
#include <cassert>
#include <string>
#include <limits>
#ifdef _MSC_VER
#define MICROSOFT_COMPILER 1
#include <intrin.h>
#endif // _MSC_VER
const int iterations = 100000000;
bool bVerifyResults = false;
std::random_device rd;
std::default_random_engine re(rd());
typedef unsigned int u32;
typedef unsigned long long u64;
class Timer
{
public:
Timer() : beg_(clock_::now()) {}
void reset() {
beg_ = clock_::now();
}
double elapsed() const {
return std::chrono::duration_cast<second_>
(clock_::now() - beg_).count();
}
private:
typedef std::chrono::high_resolution_clock clock_;
typedef std::chrono::duration<double, std::ratio<1> > second_;
std::chrono::time_point<clock_> beg_;
};
unsigned int msbPerformanceJunkie32(u32 x)
{
static const unsigned int bval[] =
{ 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4 };
unsigned int r = 0;
if (x & 0xFFFF0000) {
r += 16 / 1;
x >>= 16 / 1;
}
if (x & 0x0000FF00) {
r += 16 / 2;
x >>= 16 / 2;
}
if (x & 0x000000F0) {
r += 16 / 4;
x >>= 16 / 4;
}
return r + bval[x];
}
#define FFS(t) \
{ \
register int n = 0; \
if (!(0xffff & t)) \
n += 16; \
if (!((0xff << n) & t)) \
n += 8; \
if (!((0xf << n) & t)) \
n += 4; \
if (!((0x3 << n) & t)) \
n += 2; \
if (!((0x1 << n) & t)) \
n += 1; \
return n; \
}
unsigned int msbFfs32(u32 x)
{
FFS(x);
}
unsigned int msbLoop32(u32 x)
{
int r = 0;
if (x < 1) return 0;
while (x >>= 1) r++;
return r;
}
unsigned int msbLoop64(u64 x)
{
int r = 0;
if (x < 1) return 0;
while (x >>= 1) r++;
return r;
}
u32 msbDeBruijn32(u32 v)
{
static const int MultiplyDeBruijnBitPosition[32] =
{
0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31
};
v |= v >> 1; // first round down to one less than a power of 2
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return MultiplyDeBruijnBitPosition[(u32)(v * 0x07C4ACDDU) >> 27];
}
#ifdef MICROSOFT_COMPILER
u32 msbNative32(u32 val)
{
unsigned long result;
_BitScanReverse(&result, val);
return result;
}
u32 msbNative64(u64 val)
{
unsigned long result;
_BitScanReverse64(&result, val);
return result;
}
#endif // MICROSOFT_COMPILER
template <typename InputType>
void test(unsigned int msbFunc(InputType),
const std::string &name,
const std::vector< InputType > &inputs,
std::vector< unsigned int > &results,
bool bIsReference = false
)
{
if (bIsReference)
{
int i = 0;
for (int i = 0; i < iterations; i++)
results[i] = msbFunc(inputs[i]);
}
InputType result;
if (bVerifyResults)
{
bool bNotified = false;
for (int i = 0; i < iterations; i++)
{
result = msbFunc(inputs[i]);
if ((result != results[i]) && !bNotified)
{
std::cout << "Verification failed for " << name << ": "
<< "input was " << std::hex << inputs[i]
<< "; output was " << result
<< "; expected " << results[i]
<< std::endl;
bNotified = true;
}
}
}
else
{
Timer t;
for (int i = 0; i < iterations; i++)
{
result = msbFunc(inputs[i]);
}
double elapsed = t.elapsed();
if ( !bIsReference )
std::cout << name << " took " << elapsed << " seconds" << std::endl;
if (result == -1.0f)
std::cout << "this comparison only exists to keep the compiler from " <<
"optimizing out the benchmark; this branch will never be called";
}
}
void main()
{
std::uniform_int_distribution <u64> dist64(0,
std::numeric_limits< u64 >::max());
std::uniform_int_distribution <u32> shift64(0, 63);
std::vector< u64 > inputs64;
for (int i = 0; i < iterations; i++)
{
inputs64.push_back(dist64(re) >> shift64(re));
}
std::vector< u32 > results64;
results64.resize(iterations);
test< u64 >(msbLoop64, "msbLoop64", inputs64, results64, true);
test< u64 >(msbLoop64, "msbLoop64", inputs64, results64, false);
#ifdef MICROSOFT_COMPILER
test< u64 >(msbNative64, "msbNative64", inputs64, results64, false);
#endif // MICROSOFT_COMPILER
std::cout << std::endl;
std::uniform_int_distribution <u32> dist32(0,
std::numeric_limits< u32 >::max());
std::uniform_int_distribution <u32> shift32(0, 31);
std::vector< u32 > inputs32;
for (int i = 0; i < iterations; i++)
inputs32.push_back(dist32(re) >> shift32(re));
std::vector< u32 > results32;
results32.resize(iterations);
test< u32 >(msbLoop32, "msbLoop32", inputs32, results32, true);
test< u32 >(msbLoop32, "msbLoop32", inputs32, results32, false);
test< u32 >(msbFfs32, "msbFfs", inputs32, results32, false);
test< u32 >(msbPerformanceJunkie32, "msbPerformanceJunkie32",
inputs32, results32, false);
test< u32 >(msbDeBruijn32, "msbDeBruijn32", inputs32, results32, false);
#ifdef MICROSOFT_COMPILER
test< u32 >(msbNative32, "msbNative32", inputs32, results32, false);
#endif // MICROSOFT_COMPILER
}