OpenCV remap interpolation error?
Asked Answered
U

1

6

I'm using opencv remap function to map an image to another coordinate system. However, my initial tests indicate that there are some issues with the interpolation. Here, I give a simple example of a constant 0.1 pixel shift for a image that is 0 everywhere but at position [50,50].

import cv2
import numpy as np

prvs = np.zeros((100,80), dtype=np.float32)
prvs[50:51, 50:51] = 1.

grid_x, grid_y = np.meshgrid(np.arange(prvs.shape[1]), np.arange(prvs.shape[0]))
grid_y = grid_y.astype(np.float32)
grid_x = grid_x.astype(np.float32) + 0.1

prvs_remapped = cv2.remap(prvs, grid_x, grid_y, interpolation=cv2.INTER_LINEAR)

print(prvs_remapped[50,50])
print(prvs_remapped[50,49])

gives

0.90625
0.09375

However, I would expect 0.9 and 0.1 instead, given the linear interpolation method. Am I doing something wrong or is this some numeric issue? Are there any more precise remapping algorithms around?

Thanks.

Undoing answered 18/3, 2017 at 23:0 Comment(0)
C
11

Nice catch. Your expectations are correct in my opinion, as exemplified by np.interp giving 0.1 and 0.9 values.

Let's plot a pyramid (interpolating into the 49:51 square pixel range):

import numpy as np
import cv2
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

prvs = np.zeros((100,80), dtype=np.float32)
prvs[50:51, 50:51] = 1

lin = np.linspace(49,51,200)
grid_x,grid_y = np.meshgrid(lin,lin)
grid_x = grid_x.astype(np.float32)
grid_y = grid_y.astype(np.float32)
prvs_zoommapped = cv2.remap(prvs, grid_x, grid_y, interpolation=cv2.INTER_LINEAR)

fig = plt.figure()
ax = fig.add_subplot(111,projection='3d')
ax.plot_surface(grid_x,grid_y,prvs_zoommapped,cmap='viridis')
plt.show()

result: pyramid with jagged edges

Notice anything off? With a plotting grid of 200x200, there are very visible steps on the pyramid. Let's take a look at the cross-section of our result:

fig,ax = plt.subplots()
ax.plot(prvs_zoommapped[100,:],'x-')
ax.grid('on')
plt.show()

result: clearly piecewise-constant function

As you can see, the result is a piece-wise constant function, i.e. there's huge discretization error in the output. To be precise, we see steps of 0.03125 == 1/32 in the result.

My suspicion is that cv2.remap is not meant to be used for sub-pixel manipulations, but for a larger-scale mapping from one grid to another. The other option is that internally precision has been sacrificed for performance improvements. Either way, you're not going crazy: you should be seeing 0.1 and 0.9 as the result of exact (bi)linear interpolation.

If you're not committed to openCV due to other tasks, this mapping i.e. 2d interpolation can be performed with various bits of scipy.interpolate, namely its parts made for 2d interpolation. For your special case of linear interpolation on a regular grid, scipy.interpolate.RegularGridInterpolator or something similar might be appropriate.

Or even better (but I haven't used this submodule yet): scipy.ndimage.map_coordinates seems like exactly what you're looking for:

from scipy import ndimage
ndimage.map_coordinates(prvs, [[50.1, 49.1], [50, 50]], order=1)
# output: array([ 0.89999998,  0.1       ], dtype=float32)

Applied to the pyramid example:

import numpy as np
import cv2
from scipy import ndimage
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

prvs = np.zeros((100,80), dtype=np.float32)
prvs[50:51, 50:51] = 1

lin = np.linspace(49,51,200)
grid_x,grid_y = np.meshgrid(lin,lin)
prvs_zoommapped = ndimage.map_coordinates(prvs, [grid_x, grid_y], order=1)

fig = plt.figure()
ax = fig.add_subplot(111,projection='3d')
ax.plot_surface(grid_x,grid_y,prvs_zoommapped,cmap='viridis')
plt.show()

pretty smooth pyramid

Much better.

Converge answered 18/3, 2017 at 23:58 Comment(3)
Thanks. ndimage.map_coordinates works as expected. The interpolation error seems to have to do with some performance optimization as you already said. See also answers.opencv.org/question/123197/…Undoing
@JulianS. I'm glad it does, and thanks for the link, seems right.Sealer
Just some more follow-up: I re-compiled OpenCV and changed INTER_BITS in imgproc.hpp from 5 to 10 (as suggested in the link given above). Now the error goes down to 0.00391. The error seems to be 1/2^N, with N being an integer. However, it's 1/2^4 in case of INTER_BITS=5 and 1/2^8 in case of INTER_BITS=10. So it's not just 1/2^(INTER_BITS - 1). But just in case someone wants to increase the precision of OpenCV a bit and can't change to another library I thought it might be helpful.Undoing

© 2022 - 2025 — McMap. All rights reserved.