Let me make an example that I often use with my pupils, in order to explan the concepts of null hypothesis, alpha, & significance.
Let's say we're playing a round of Poker. I deal the cards & we make our bets. Hey, lucky me! I got a flush on my first hand. You curse your luck and we deal again. I get another flush and win. Another round, and again, I get 4 aces: at this point you kick the table and call me a cheater: "this is bs! You're trying to rob me!"
Let's explain this in terms of probability: There is a possibility associated with getting a flush on the first hand: anyone can get lucky. There's a smaller probability of getting too lucky twice in a row. There is finally a probability of getting really lucky three times in a row. But for the third shot, you are stating: "the probability that you get SO LUCKY is TOO SMALL. I REJECT the idea that you're just lucky. I'm calling you a cheater". That is, you rejected the null hypothesis (the hypothesis that nothing is going on!)
The null hypothesis is, in all cases: "This thing we are observing is an effect of randomness". In our example, the null hypothesis states: "I'm just getting all these good hands one after the other, because i'm lucky"
p-value is the value associated with an event, given that it happens randomly. You can calculate the odds of getting good hands in poker after properly shuffling the deck. Or for example: if I toss a fair coin 20 times, the odss that I get 20 heads in a row is 1/(2^20) = 0.000000953 (really small). That's the p-value for 20 heads in a row, tossing 20 times.
"Statistically significant", means "This event seems to be weird. It has a really tiny probability of happening by chance. So, i'll reject the null hypothesis."
Alpha, or critical p-value, is the magic point where you "kick the table", and reject the null hypothesis. In experimental applications, you define this in advance (alpha=0.05, e.g.) In our poker example, you can call me a cheater after three lucky hands, or after 10 out of 12, and so on. It's a threshold of probability.