I can print with printf
as a hex or octal number. Is there a format tag to print as binary, or arbitrary base?
I am running gcc.
printf("%d %x %o\n", 10, 10, 10); //prints "10 A 12\n"
printf("%b\n", 10); // prints "%b\n"
I can print with printf
as a hex or octal number. Is there a format tag to print as binary, or arbitrary base?
I am running gcc.
printf("%d %x %o\n", 10, 10, 10); //prints "10 A 12\n"
printf("%b\n", 10); // prints "%b\n"
Hacky but works for me:
#define BYTE_TO_BINARY_PATTERN "%c%c%c%c%c%c%c%c"
#define BYTE_TO_BINARY(byte) \
((byte) & 0x80 ? '1' : '0'), \
((byte) & 0x40 ? '1' : '0'), \
((byte) & 0x20 ? '1' : '0'), \
((byte) & 0x10 ? '1' : '0'), \
((byte) & 0x08 ? '1' : '0'), \
((byte) & 0x04 ? '1' : '0'), \
((byte) & 0x02 ? '1' : '0'), \
((byte) & 0x01 ? '1' : '0')
printf("Leading text "BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(byte));
For multi-byte types
printf("m: "BYTE_TO_BINARY_PATTERN" "BYTE_TO_BINARY_PATTERN"\n",
BYTE_TO_BINARY(m>>8), BYTE_TO_BINARY(m));
You need all the extra quotes, unfortunately. This approach has the efficiency risks of macros (don't pass a function as the argument to BYTE_TO_BINARY
) but avoids the memory issues and multiple invocations of strcat in some of the other proposals here.
printf
which the ones with static
buffers can't. –
Neustria %d
to %c
, because it should be even faster (%d
has to perform digit->char conversion, while %c
simply outputs the argument –
Succursal int
is 32-bits on system, printing single 32-bit value will require space for 32 * 4-byte values; total of 128 bytes. Which, depending on stack size, may or may not be an issue. –
Back '0'
or '1'
pushed to the stack as int
s before printf
is entered. You can improve it by reducing the number of pushed arguments, like this answer below does. –
Back ((byte & 0x80) ? '1' : '0')
to get each bit –
Unconnected BYTE_TO_BINARY(byte)
definition work? It almost looks like a function. –
Williswillison Print Binary for Any Datatype
// Assumes little endian
void printBits(size_t const size, void const * const ptr)
{
unsigned char *b = (unsigned char*) ptr;
unsigned char byte;
int i, j;
for (i = size-1; i >= 0; i--) {
for (j = 7; j >= 0; j--) {
byte = (b[i] >> j) & 1;
printf("%u", byte);
}
}
puts("");
}
Test:
int main(int argc, char* argv[])
{
int i = 23;
uint ui = UINT_MAX;
float f = 23.45f;
printBits(sizeof(i), &i);
printBits(sizeof(ui), &ui);
printBits(sizeof(f), &f);
return 0;
}
size_t i; for (i=size; i-- > 0; )
to avoid size_t
vs. int
mis-match. –
Sanborn ptr
(outer loop); then for each bit the current byte (inner loop), mask the byte by the current bit (1 << j
). Shift that right resulting in a byte containing 0 (0000 0000b
) or 1 (0000 0001b
). Print the resulting byte printf with format %u
. HTH. –
Segment size_t i;
for a count-down loop like this because then i
will always be >=0
. (You could alter the loop.) –
Slowly >
with size_t
and not the >=
of your comment to determine when to terminate the loop. –
Sanborn >
and >=
with unsigned types. 0
is an unsigned edge case and commonly occurs, unlike signed math with less common INT_MAX/INT_MIN
. –
Sanborn (++k % 4 == 0) ? printf(" ") : 0;
. Don't forget to declare k
. –
Excel Here is a quick hack to demonstrate techniques to do what you want.
#include <stdio.h> /* printf */
#include <string.h> /* strcat */
#include <stdlib.h> /* strtol */
const char *byte_to_binary
(
int x
)
{
static char b[9];
b[0] = '\0';
int z;
for (z = 128; z > 0; z >>= 1)
{
strcat(b, ((x & z) == z) ? "1" : "0");
}
return b;
}
int main
(
void
)
{
{
/* binary string to int */
char *tmp;
char *b = "0101";
printf("%d\n", strtol(b, &tmp, 2));
}
{
/* byte to binary string */
printf("%s\n", byte_to_binary(5));
}
return 0;
}
strcat
is an inefficient method of adding a single char to the string on each pass of the loop. Instead, add a char *p = b;
and replace the inner loop with *p++ = (x & z) ? '1' : '0'
. z
should start at 128 (2^7) instead of 256 (2^8). Consider updating to take a pointer to the buffer to use (for thread safety), similar to inet_ntoa()
. –
Letaletch strcat()
! I agree that strcat
is probably easier to understand than post-incrementing a dereferenced pointer for the assignment, but even beginners need to know how to properly use the standard library. Maybe using an indexed array for assignment would have been a good demonstration (and will actually work, since b
isn't reset to all-zeros each time you call the function). –
Letaletch printf("%s + %s = %s", byte_to_binary(3), byte_to_binary(4), byte_to_binary(3+4))
. –
Spiniferous #define print_binary(n) { unsigned i; for (i = 1 << 31; i > 0; i = i / 2) { (n & i)? printf("1") : printf("0"); } printf("\n"); }
–
Timmie strcat
is generally "don't". Aside from very rare cases where code needs to concatenate something to a string whose length it has no way of knowing, but which is still known to have enough space after it to hold the material to be concatenated, it's almost always better to determine the string length and then use memcpy
or direct character assignments. –
Eolithic for
loop which counts from 0 to 7 and writing to b[0] through b[7], and then zeroing out b[8], would be a nice clean way to go. The length of the string is known at each iteration, so strcat
really adds nothing. –
Eolithic There isn't a binary conversion specifier in glibc normally.
It is possible to add custom conversion types to the printf() family of functions in glibc. See register_printf_function for details. You could add a custom %b conversion for your own use, if it simplifies the application code to have it available.
Here is an example of how to implement a custom printf formats in glibc.
warning: 'register_printf_function' is deprecated [-Wdeprecated-declarations]
There is a new function to do the same, though: register_printf_specifier()
. An example of the new usage can be found here: codereview.stackexchange.com/q/219994/200418 –
Candelabra You could use a small table to improve speed1. Similar techniques are useful in the embedded world, for example, to invert a byte:
const char *bit_rep[16] = {
[ 0] = "0000", [ 1] = "0001", [ 2] = "0010", [ 3] = "0011",
[ 4] = "0100", [ 5] = "0101", [ 6] = "0110", [ 7] = "0111",
[ 8] = "1000", [ 9] = "1001", [10] = "1010", [11] = "1011",
[12] = "1100", [13] = "1101", [14] = "1110", [15] = "1111",
};
void print_byte(uint8_t byte)
{
printf("%s%s", bit_rep[byte >> 4], bit_rep[byte & 0x0F]);
}
1 I'm mostly referring to embedded applications where optimizers are not so aggressive and the speed difference is visible.
%s
s and the same number of bit_rep[word >> 4K & 0xF..F]
arguments should do. Although I would argue 16 string prints for a 64-bit number is probably not going to be any faster than looping 64 times and outputting 0/1. –
Australasia [xx]
, those are designated initializers for arrays in C. They're not needed here, but it makes it clear which index gets which value. –
Subequatorial Print the least significant bit and shift it out on the right. Doing this until the integer becomes zero prints the binary representation without leading zeros but in reversed order. Using recursion, the order can be corrected quite easily.
#include <stdio.h>
void print_binary(unsigned int number)
{
if (number >> 1) {
print_binary(number >> 1);
}
putc((number & 1) ? '1' : '0', stdout);
}
To me, this is one of the cleanest solutions to the problem. If you like 0b
prefix and a trailing new line character, I suggest wrapping the function.
putc('0'+(number&1), stdout);
–
Fecula int
values equal or less than 0. –
Invasion As of February 3rd, 2022, the GNU C Library been updated to version 2.35. As a result, %b
is now supported to output in binary format.
printf-family functions now support the %b format for output of integers in binary, as specified in draft ISO C2X, and the %B variant of that format recommended by draft ISO C2X.
ldd --version
reports: ldd (Ubuntu GLIBC 2.35-0ubuntu3.1) 2.35
! The problem is that man 3 printf
is completely silent on %b
and %B
:( –
Pneumatograph Based on @William Whyte's answer, this is a macro that provides int8
,16
,32
& 64
versions, reusing the INT8
macro to avoid repetition.
/* --- PRINTF_BYTE_TO_BINARY macro's --- */
#define PRINTF_BINARY_PATTERN_INT8 "%c%c%c%c%c%c%c%c"
#define PRINTF_BYTE_TO_BINARY_INT8(i) \
(((i) & 0x80ll) ? '1' : '0'), \
(((i) & 0x40ll) ? '1' : '0'), \
(((i) & 0x20ll) ? '1' : '0'), \
(((i) & 0x10ll) ? '1' : '0'), \
(((i) & 0x08ll) ? '1' : '0'), \
(((i) & 0x04ll) ? '1' : '0'), \
(((i) & 0x02ll) ? '1' : '0'), \
(((i) & 0x01ll) ? '1' : '0')
#define PRINTF_BINARY_PATTERN_INT16 \
PRINTF_BINARY_PATTERN_INT8 PRINTF_BINARY_PATTERN_INT8
#define PRINTF_BYTE_TO_BINARY_INT16(i) \
PRINTF_BYTE_TO_BINARY_INT8((i) >> 8), PRINTF_BYTE_TO_BINARY_INT8(i)
#define PRINTF_BINARY_PATTERN_INT32 \
PRINTF_BINARY_PATTERN_INT16 PRINTF_BINARY_PATTERN_INT16
#define PRINTF_BYTE_TO_BINARY_INT32(i) \
PRINTF_BYTE_TO_BINARY_INT16((i) >> 16), PRINTF_BYTE_TO_BINARY_INT16(i)
#define PRINTF_BINARY_PATTERN_INT64 \
PRINTF_BINARY_PATTERN_INT32 PRINTF_BINARY_PATTERN_INT32
#define PRINTF_BYTE_TO_BINARY_INT64(i) \
PRINTF_BYTE_TO_BINARY_INT32((i) >> 32), PRINTF_BYTE_TO_BINARY_INT32(i)
/* --- end macros --- */
#include <stdio.h>
int main() {
long long int flag = 1648646756487983144ll;
printf("My Flag "
PRINTF_BINARY_PATTERN_INT64 "\n",
PRINTF_BYTE_TO_BINARY_INT64(flag));
return 0;
}
This outputs:
My Flag 0001011011100001001010110111110101111000100100001111000000101000
For readability you may want to add a separator for eg:
My Flag 00010110,11100001,00101011,01111101,01111000,10010000,11110000,00101000
PRINTF_BYTE_TO_BINARY_INT#
defines to optionally use. –
Protoxide Here's a version of the function that does not suffer from reentrancy issues or limits on the size/type of the argument:
#define FMT_BUF_SIZE (CHAR_BIT*sizeof(uintmax_t)+1)
char *binary_fmt(uintmax_t x, char buf[static FMT_BUF_SIZE])
{
char *s = buf + FMT_BUF_SIZE;
*--s = 0;
if (!x) *--s = '0';
for (; x; x /= 2) *--s = '0' + x%2;
return s;
}
Note that this code would work just as well for any base between 2 and 10 if you just replace the 2's by the desired base. Usage is:
char tmp[FMT_BUF_SIZE];
printf("%s\n", binary_fmt(x, tmp));
Where x
is any integral expression.
char *a = binary_fmt(x), *b = binary_fmt(y);
will not work as expected. Forcing the caller to pass a buffer makes the storage requirement explict; the caller is of course free to use a static buffer if that's really desired, and then the reuse of the same buffer becomes explicit. Also note that, on modern PIC ABIs, static buffers usually cost more code to access than buffers on the stack. –
Upbear malloc
for this would be hideously ugly; not only is it a huge waste of time and memory but, worst of all, you have to handle the error cases. My intent was always that most callers would pass a pointer to an array with automatic storage duration. Note that, with C99, it could even be a compound literal created at the point of the call. –
Upbear tmp
is an automatic variable, not a global variable, if that's what you intend; but regardless, what's important here is that there are clearly existing well-honed idioms for dealing with the common practice of using function-local static storage, and the trade-off in design terms are I think widely understood. Conversely the trade-offs in micro-performance gains for avoiding function-local static storage, especially on this scale, are largely invisible to all but the most pedantic over-optimizers. –
Officious static const
; as it is, it becomes necessary to enclose a statement that uses a compound literal within a scoping block [e.g. to use it as part of an if
statement or while
loop] there's no way to extend its lifetime except by declaring an automatic variable and setting its value at the spot where the compound literal had been used (an action which would work fine if... –
Eolithic socklen_t*
where socklen_t
would suffice for most usage) or in places where you need to pass a pointer to a structure containing inputs to a function. I can see where you're concerned about lifetime, but it is well-defined and it provides the cleanest solution for formatting buffers - the API just needs to be well-documented. –
Upbear #include
directive. –
Eolithic Quick and easy solution:
void printbits(my_integer_type x)
{
for(int i=sizeof(x)<<3; i; i--)
putchar('0'+((x>>(i-1))&1));
}
Works for any size type and for signed and unsigned ints. The '&1' is needed to handle signed ints as the shift may do sign extension.
There are so many ways of doing this. Here's a super simple one for printing 32 bits or n bits from a signed or unsigned 32 bit type (not putting a negative if signed, just printing the actual bits) and no carriage return. Note that i is decremented before the bit shift:
#define printbits_n(x,n) for (int i=n;i;i--,putchar('0'|(x>>i)&1))
#define printbits_32(x) printbits_n(x,32)
What about returning a string with the bits to store or print later? You either can allocate the memory and return it and the user has to free it, or else you return a static string but it will get clobbered if it's called again, or by another thread. Both methods shown:
char *int_to_bitstring_alloc(int x, int count)
{
count = count<1 ? sizeof(x)*8 : count;
char *pstr = malloc(count+1);
for(int i = 0; i<count; i++)
pstr[i] = '0' | ((x>>(count-1-i))&1);
pstr[count]=0;
return pstr;
}
#define BITSIZEOF(x) (sizeof(x)*8)
char *int_to_bitstring_static(int x, int count)
{
static char bitbuf[BITSIZEOF(x)+1];
count = (count<1 || count>BITSIZEOF(x)) ? BITSIZEOF(x) : count;
for(int i = 0; i<count; i++)
bitbuf[i] = '0' | ((x>>(count-1-i))&1);
bitbuf[count]=0;
return bitbuf;
}
Call with:
// memory allocated string returned which needs to be freed
char *pstr = int_to_bitstring_alloc(0x97e50ae6, 17);
printf("bits = 0b%s\n", pstr);
free(pstr);
// no free needed but you need to copy the string to save it somewhere else
char *pstr2 = int_to_bitstring_static(0x97e50ae6, 17);
printf("bits = 0b%s\n", pstr2);
*int_to_bitstring_
methods do not calculate the results properly, or am I missing something? printbits
works fine. Also, for decimals larger than 32 results of static and alloc methods begins to differ. Not much experience in C and working with bits yet. –
Arabesque Is there a printf converter to print in binary format?
The printf()
family is only able to print integers in base 8, 10, and 16 using the standard specifiers directly. I suggest creating a function that converts the number to a string per code's particular needs.
[Edit 2022] This is expected to change with the next version of C which implements "%b"
.
Binary constants such as 0b10101010, and %b conversion specifier for printf() function family C2x
To print in any base [2-36]
All other answers so far have at least one of these limitations.
Use static memory for the return buffer. This limits the number of times the function may be used as an argument to printf()
.
Allocate memory requiring the calling code to free pointers.
Require the calling code to explicitly provide a suitable buffer.
Call printf()
directly. This obliges a new function for to fprintf()
, sprintf()
, vsprintf()
, etc.
Use a reduced integer range.
The following has none of the above limitation. It does require C99 or later and use of "%s"
. It uses a compound literal to provide the buffer space. It has no trouble with multiple calls in a printf()
.
#include <assert.h>
#include <limits.h>
#define TO_BASE_N (sizeof(unsigned)*CHAR_BIT + 1)
// v--compound literal--v
#define TO_BASE(x, b) my_to_base((char [TO_BASE_N]){""}, (x), (b))
// Tailor the details of the conversion function as needed
// This one does not display unneeded leading zeros
// Use return value, not `buf`
char *my_to_base(char buf[TO_BASE_N], unsigned i, int base) {
assert(base >= 2 && base <= 36);
char *s = &buf[TO_BASE_N - 1];
*s = '\0';
do {
s--;
*s = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[i % base];
i /= base;
} while (i);
// Could employ memmove here to move the used buffer to the beginning
// size_t len = &buf[TO_BASE_N] - s;
// memmove(buf, s, len);
return s;
}
#include <stdio.h>
int main(void) {
int ip1 = 0x01020304;
int ip2 = 0x05060708;
printf("%s %s\n", TO_BASE(ip1, 16), TO_BASE(ip2, 16));
printf("%s %s\n", TO_BASE(ip1, 2), TO_BASE(ip2, 2));
puts(TO_BASE(ip1, 8));
puts(TO_BASE(ip1, 36));
return 0;
}
Output
1020304 5060708
1000000100000001100000100 101000001100000011100001000
100401404
A2F44
const char* byte_to_binary(int x)
{
static char b[sizeof(int)*8+1] = {0};
int y;
long long z;
for (z = 1LL<<sizeof(int)*8-1, y = 0; z > 0; z >>= 1, y++) {
b[y] = (((x & z) == z) ? '1' : '0');
}
b[y] = 0;
return b;
}
8
s should be replaced by CHAR_BIT
. –
Pieter printf(byte_to_binary(1), byte_to_binary(5))
, where one call would override the string from the other call –
Villar None of the previously posted answers are exactly what I was looking for, so I wrote one. It is super simple to use %B
with the printf
!
/*
* File: main.c
* Author: Techplex.Engineer
*
* Created on February 14, 2012, 9:16 PM
*/
#include <stdio.h>
#include <stdlib.h>
#include <printf.h>
#include <math.h>
#include <string.h>
static int printf_arginfo_M(const struct printf_info *info, size_t n, int *argtypes)
{
/* "%M" always takes one argument, a pointer to uint8_t[6]. */
if (n > 0) {
argtypes[0] = PA_POINTER;
}
return 1;
}
static int printf_output_M(FILE *stream, const struct printf_info *info, const void *const *args)
{
int value = 0;
int len;
value = *(int **) (args[0]);
// Beginning of my code ------------------------------------------------------------
char buffer [50] = ""; // Is this bad?
char buffer2 [50] = ""; // Is this bad?
int bits = info->width;
if (bits <= 0)
bits = 8; // Default to 8 bits
int mask = pow(2, bits - 1);
while (mask > 0) {
sprintf(buffer, "%s", ((value & mask) > 0 ? "1" : "0"));
strcat(buffer2, buffer);
mask >>= 1;
}
strcat(buffer2, "\n");
// End of my code --------------------------------------------------------------
len = fprintf(stream, "%s", buffer2);
return len;
}
int main(int argc, char** argv)
{
register_printf_specifier('B', printf_output_M, printf_arginfo_M);
printf("%4B\n", 65);
return EXIT_SUCCESS;
}
char* buffer = (char*) malloc(sizeof(char) * 50);
–
Wesleywesleyan char *buffer = malloc(sizeof(*buffer) * 50);
–
Australasia This code should handle your needs up to 64 bits.
I created two functions: pBin
and pBinFill
. Both do the same thing, but pBinFill
fills in the leading spaces with the fill character provided by its last argument.
The test function generates some test data, then prints it out using the pBinFill
function.
#define kDisplayWidth 64
char* pBin(long int x,char *so)
{
char s[kDisplayWidth+1];
int i = kDisplayWidth;
s[i--] = 0x00; // terminate string
do { // fill in array from right to left
s[i--] = (x & 1) ? '1' : '0'; // determine bit
x >>= 1; // shift right 1 bit
} while (x > 0);
i++; // point to last valid character
sprintf(so, "%s", s+i); // stick it in the temp string string
return so;
}
char* pBinFill(long int x, char *so, char fillChar)
{
// fill in array from right to left
char s[kDisplayWidth+1];
int i = kDisplayWidth;
s[i--] = 0x00; // terminate string
do { // fill in array from right to left
s[i--] = (x & 1) ? '1' : '0';
x >>= 1; // shift right 1 bit
} while (x > 0);
while (i >= 0) s[i--] = fillChar; // fill with fillChar
sprintf(so, "%s", s);
return so;
}
void test()
{
char so[kDisplayWidth+1]; // working buffer for pBin
long int val = 1;
do {
printf("%ld =\t\t%#lx =\t\t0b%s\n", val, val, pBinFill(val, so, '0'));
val *= 11; // generate test data
} while (val < 100000000);
}
Output:
00000001 = 0x000001 = 0b00000000000000000000000000000001
00000011 = 0x00000b = 0b00000000000000000000000000001011
00000121 = 0x000079 = 0b00000000000000000000000001111001
00001331 = 0x000533 = 0b00000000000000000000010100110011
00014641 = 0x003931 = 0b00000000000000000011100100110001
00161051 = 0x02751b = 0b00000000000000100111010100011011
01771561 = 0x1b0829 = 0b00000000000110110000100000101001
19487171 = 0x12959c3 = 0b00000001001010010101100111000011
Some runtimes support "%b" although that is not a standard.
Also see here for an interesting discussion:
http://bytes.com/forum/thread591027.html
HTH
Maybe a bit OT, but if you need this only for debuging to understand or retrace some binary operations you are doing, you might take a look on wcalc (a simple console calculator). With the -b options you get binary output.
e.g.
$ wcalc -b "(256 | 3) & 0xff" = 0b11
ruby -e 'printf("%b\n", 0xabc)'
, dc
followed by 2o
followed by 0x123p
, and so forth. –
Highsmith There is no formatting function in the C standard library to output binary like that. All the format operations the printf family supports are towards human readable text.
Use:
char buffer [33];
itoa(value, buffer, 2);
printf("\nbinary: %s\n", buffer);
For more ref., see How to print binary number via printf.
The following recursive function might be useful:
void bin(int n)
{
/* Step 1 */
if (n > 1)
bin(n/2);
/* Step 2 */
printf("%d", n % 2);
}
This approach has as attributes:
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <limits.h>
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define for_endian(size) for (int i = 0; i < size; ++i)
#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define for_endian(size) for (int i = size - 1; i >= 0; --i)
#else
#error "Endianness not detected"
#endif
#define printb(value) \
({ \
typeof(value) _v = value; \
__printb((typeof(_v) *) &_v, sizeof(_v)); \
})
#define MSB_MASK 1 << (CHAR_BIT - 1)
void __printb(void *value, size_t size)
{
unsigned char uc;
unsigned char bits[CHAR_BIT + 1];
bits[CHAR_BIT] = '\0';
for_endian(size) {
uc = ((unsigned char *) value)[i];
memset(bits, '0', CHAR_BIT);
for (int j = 0; uc && j < CHAR_BIT; ++j) {
if (uc & MSB_MASK)
bits[j] = '1';
uc <<= 1;
}
printf("%s ", bits);
}
printf("\n");
}
int main(void)
{
uint8_t c1 = 0xff, c2 = 0x44;
uint8_t c3 = c1 + c2;
printb(c1);
printb((char) 0xff);
printb((short) 0xff);
printb(0xff);
printb(c2);
printb(0x44);
printb(0x4411ff01);
printb((uint16_t) c3);
printb('A');
printf("\n");
return 0;
}
$ ./printb
11111111
11111111
00000000 11111111
00000000 00000000 00000000 11111111
01000100
00000000 00000000 00000000 01000100
01000100 00010001 11111111 00000001
00000000 01000011
00000000 00000000 00000000 01000001
I have used another approach (bitprint.h) to fill a table with all bytes (as bit strings) and print them based on the input/index byte. It's worth taking a look.
-O0
which will refrain from making unsound optimizations (such as assuming that if a compiler would not be required to accommodate the possibility of p1 being used to access some storage within some context, and the compiler can show that p1 and p2 will be equal, it may ignore the possibility of p2 being used to access that storage). –
Eolithic void
print_binary(unsigned int n)
{
unsigned int mask = 0;
/* this grotesque hack creates a bit pattern 1000... */
/* regardless of the size of an unsigned int */
mask = ~mask ^ (~mask >> 1);
for(; mask != 0; mask >>= 1) {
putchar((n & mask) ? '1' : '0');
}
}
I optimized the top solution for size and C++-ness, and got to this solution:
inline std::string format_binary(unsigned int x)
{
static char b[33];
b[32] = '\0';
for (int z = 0; z < 32; z++) {
b[31-z] = ((x>>z) & 0x1) ? '1' : '0';
}
return b;
}
std::string
), you might as well get rid of the static
array. Simplest way would be to just drop the static
qualifier and make b
local to the function. –
Australasia ((x>>z) & 0x01) + '0'
is sufficient. –
Enterprising One statement generic conversion of any integral type into the binary string representation using standard library:
#include <bitset>
MyIntegralType num = 10;
print("%s\n",
std::bitset<sizeof(num) * 8>(num).to_string().insert(0, "0b").c_str()
); // prints "0b1010\n"
Or just: std::cout << std::bitset<sizeof(num) * 8>(num);
Maybe someone will find this solution useful:
void print_binary(int number, int num_digits) {
int digit;
for(digit = num_digits - 1; digit >= 0; digit--) {
printf("%c", number & (1 << digit) ? '1' : '0');
}
}
No standard and portable way.
Some implementations provide itoa(), but it's not going to be in most, and it has a somewhat crummy interface. But the code is behind the link and should let you implement your own formatter pretty easily.
void print_ulong_bin(const unsigned long * const var, int bits) {
int i;
#if defined(__LP64__) || defined(_LP64)
if( (bits > 64) || (bits <= 0) )
#else
if( (bits > 32) || (bits <= 0) )
#endif
return;
for(i = 0; i < bits; i++) {
printf("%lu", (*var >> (bits - 1 - i)) & 0x01);
}
}
should work - untested.
I liked the code by paniq, the static buffer is a good idea. However it fails if you want multiple binary formats in a single printf() because it always returns the same pointer and overwrites the array.
Here's a C style drop-in that rotates pointer on a split buffer.
char *
format_binary(unsigned int x)
{
#define MAXLEN 8 // width of output format
#define MAXCNT 4 // count per printf statement
static char fmtbuf[(MAXLEN+1)*MAXCNT];
static int count = 0;
char *b;
count = count % MAXCNT + 1;
b = &fmtbuf[(MAXLEN+1)*count];
b[MAXLEN] = '\0';
for (int z = 0; z < MAXLEN; z++) { b[MAXLEN-1-z] = ((x>>z) & 0x1) ? '1' : '0'; }
return b;
}
count
reaches MAXCNT - 1
, the next increment of count
would make it MAXCNT
instead of zero, which will cause an access out of boundaries of the array. You should have done count = (count + 1) % MAXCNT
. –
Australasia MAXCNT + 1
calls to this function in a single printf
. In general, if you want to give the option for more than 1 thing, make it infinite. Numbers such as 4 could only cause problem. –
Australasia Here is a small variation of paniq's solution that uses templates to allow printing of 32 and 64 bit integers:
template<class T>
inline std::string format_binary(T x)
{
char b[sizeof(T)*8+1] = {0};
for (size_t z = 0; z < sizeof(T)*8; z++)
b[sizeof(T)*8-1-z] = ((x>>z) & 0x1) ? '1' : '0';
return std::string(b);
}
And can be used like:
unsigned int value32 = 0x1e127ad;
printf( " 0x%x: %s\n", value32, format_binary(value32).c_str() );
unsigned long long value64 = 0x2e0b04ce0;
printf( "0x%llx: %s\n", value64, format_binary(value64).c_str() );
Here is the result:
0x1e127ad: 00000001111000010010011110101101
0x2e0b04ce0: 0000000000000000000000000000001011100000101100000100110011100000
Yet another approach to print in binary: Convert the integer first.
To print 6
in binary, change 6
to 110
, then print "110"
.
Bypasses char buf[]
issues.
printf()
format specifiers, flags, & fields like "%08lu"
, "%*lX"
still readily usable.
Not only binary (base 2), this method expandable to other bases up to 16.
Limited to smallish integer values.
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>
unsigned long char_to_bin10(char ch) {
unsigned char uch = ch;
unsigned long sum = 0;
unsigned long power = 1;
while (uch) {
if (uch & 1) {
sum += power;
}
power *= 10;
uch /= 2;
}
return sum;
}
uint64_t uint16_to_bin16(uint16_t u) {
uint64_t sum = 0;
uint64_t power = 1;
while (u) {
if (u & 1) {
sum += power;
}
power *= 16;
u /= 2;
}
return sum;
}
void test(void) {
printf("%lu\n", char_to_bin10(0xF1));
// 11110001
printf("%" PRIX64 "\n", uint16_to_bin16(0xF731));
// 1111011100110001
}
I just want to post my solution. It's used to get zeroes and ones of one byte, but calling this function few times can be used for larger data blocks. I use it for 128 bit or larger structs. You can also modify it to use size_t as input parameter and pointer to data you want to print, so it can be size independent. But it works for me quit well as it is.
void print_binary(unsigned char c)
{
unsigned char i1 = (1 << (sizeof(c)*8-1));
for(; i1; i1 >>= 1)
printf("%d",(c&i1)!=0);
}
void get_binary(unsigned char c, unsigned char bin[])
{
unsigned char i1 = (1 << (sizeof(c)*8-1)), i2=0;
for(; i1; i1>>=1, i2++)
bin[i2] = ((c&i1)!=0);
}
Here's how I did it for an unsigned int
void printb(unsigned int v) {
unsigned int i, s = 1<<((sizeof(v)<<3)-1); // s = only most significant bit at 1
for (i = s; i; i>>=1) printf("%d", v & i || 0 );
}
My solution:
long unsigned int i;
for(i = 0u; i < sizeof(integer) * CHAR_BIT; i++) {
if(integer & LONG_MIN)
printf("1");
else
printf("0");
integer <<= 1;
}
printf("\n");
Based on @ideasman42's suggestion in his answer, this is a macro that provides int8
,16
,32
& 64
versions, reusing the INT8
macro to avoid repetition.
/* --- PRINTF_BYTE_TO_BINARY macro's --- */
#define PRINTF_BINARY_SEPARATOR
#define PRINTF_BINARY_PATTERN_INT8 "%c%c%c%c%c%c%c%c"
#define PRINTF_BYTE_TO_BINARY_INT8(i) \
(((i) & 0x80ll) ? '1' : '0'), \
(((i) & 0x40ll) ? '1' : '0'), \
(((i) & 0x20ll) ? '1' : '0'), \
(((i) & 0x10ll) ? '1' : '0'), \
(((i) & 0x08ll) ? '1' : '0'), \
(((i) & 0x04ll) ? '1' : '0'), \
(((i) & 0x02ll) ? '1' : '0'), \
(((i) & 0x01ll) ? '1' : '0')
#define PRINTF_BINARY_PATTERN_INT16 \
PRINTF_BINARY_PATTERN_INT8 PRINTF_BINARY_SEPARATOR PRINTF_BINARY_PATTERN_INT8
#define PRINTF_BYTE_TO_BINARY_INT16(i) \
PRINTF_BYTE_TO_BINARY_INT8((i) >> 8), PRINTF_BYTE_TO_BINARY_INT8(i)
#define PRINTF_BINARY_PATTERN_INT32 \
PRINTF_BINARY_PATTERN_INT16 PRINTF_BINARY_SEPARATOR PRINTF_BINARY_PATTERN_INT16
#define PRINTF_BYTE_TO_BINARY_INT32(i) \
PRINTF_BYTE_TO_BINARY_INT16((i) >> 16), PRINTF_BYTE_TO_BINARY_INT16(i)
#define PRINTF_BINARY_PATTERN_INT64 \
PRINTF_BINARY_PATTERN_INT32 PRINTF_BINARY_SEPARATOR PRINTF_BINARY_PATTERN_INT32
#define PRINTF_BYTE_TO_BINARY_INT64(i) \
PRINTF_BYTE_TO_BINARY_INT32((i) >> 32), PRINTF_BYTE_TO_BINARY_INT32(i)
/* --- end macros --- */
#include <stdio.h>
int main() {
long long int flag = 1648646756487983144ll;
printf("My Flag "
PRINTF_BINARY_PATTERN_INT64 "\n",
PRINTF_BYTE_TO_BINARY_INT64(flag));
return 0;
}
This outputs:
My Flag 0001011011100001001010110111110101111000100100001111000000101000
For readability you can change :#define PRINTF_BINARY_SEPARATOR
to #define PRINTF_BINARY_SEPARATOR ","
or #define PRINTF_BINARY_SEPARATOR " "
This will output:
My Flag 00010110,11100001,00101011,01111101,01111000,10010000,11110000,00101000
or
My Flag 00010110 11100001 00101011 01111101 01111000 10010000 11110000 00101000
#include <stdio.h>
#include <conio.h>
void main()
{
clrscr();
printf("Welcome\n\n\n");
unsigned char x='A';
char ch_array[8];
for(int i=0; x!=0; i++)
{
ch_array[i] = x & 1;
x = x >>1;
}
for(--i; i>=0; i--)
printf("%d", ch_array[i]);
getch();
}
/* Convert an int to it's binary representation */
char *int2bin(int num, int pad)
{
char *str = malloc(sizeof(char) * (pad+1));
if (str) {
str[pad]='\0';
while (--pad>=0) {
str[pad] = num & 1 ? '1' : '0';
num >>= 1;
}
} else {
return "";
}
return str;
}
/* example usage */
printf("The number 5 in binary is %s", int2bin(5, 4));
/* "The number 5 in binary is 0101" */
Next will show to you memory layout:
#include <limits>
#include <iostream>
#include <string>
using namespace std;
template<class T> string binary_text(T dec, string byte_separator = " ") {
char* pch = (char*)&dec;
string res;
for (int i = 0; i < sizeof(T); i++) {
for (int j = 1; j < 8; j++) {
res.append(pch[i] & 1 ? "1" : "0");
pch[i] /= 2;
}
res.append(byte_separator);
}
return res;
}
int main() {
cout << binary_text(5) << endl;
cout << binary_text(.1) << endl;
return 0;
}
A small utility function in C to do this while solving a bit manipulation problem. This goes over the string checking each set bit using a mask (1<
void
printStringAsBinary(char * input)
{
char * temp = input;
int i = 7, j =0;;
int inputLen = strlen(input);
/* Go over the string, check first bit..bit by bit and print 1 or 0
**/
for (j = 0; j < inputLen; j++) {
printf("\n");
while (i>=0) {
if (*temp & (1 << i)) {
printf("1");
} else {
printf("0");
}
i--;
}
temp = temp+1;
i = 7;
printf("\n");
}
}
void DisplayBinary(unsigned int n)
{
int l = sizeof(n) * 8;
for (int i = l - 1 ; i >= 0; i--) {
printf("%x", (n & (1 << i)) >> i);
}
}
Not sure why the following hasn't been proposed yet:
#include <stdio.h>
int main()
{
int n = 156;
printf(" n_dec: %d\n n_bin: %08b\n", n, n);
return 0;
}
Output:
ubuntu@server:~$ ./a.out
n_dec: 156
n_bin: 10011100
ubuntu@server:~$
%b
format specifier but that it is not supported by their compiler. Note that it is not part of Standard C but may be supported on some compilers. –
Dunston glibc
for a while now - ver 2.34 IIRC. Unfortunately it's still not covered in man printf
. @AdrianMole, wrt yr comment: Does ANSI C cover libraries? FWIW, I've read that %b
is covered in some C++ std, but don't know this for fact. –
Autarchy %b
in C++ but I can't find a citation, right now. –
Dunston There is also an idea to convert the number to hexadecimal format and then to decode each hexadecimal cipher to four "bits" (ones and zeros). sprintf
can do bit operations for us:
const char* binary(int n) {
static const char binnums[16][5] = { "0000","0001","0010","0011",
"0100","0101","0110","0111","1000","1001","1010","1011","1100","1101","1110","1111" };
static const char* hexnums = "0123456789abcdef";
static char inbuffer[16], outbuffer[4*16];
const char *i;
sprintf(inbuffer,"%x",n); // hexadecimal n -> inbuffer
for(i=inbuffer; *i!=0; ++i) { // for each hexadecimal cipher
int d = strchr(hexnums,*i) - hexnums; // store its decimal value to d
char* o = outbuffer+(i-inbuffer)*4; // shift four characters in outbuffer
sprintf(o,"%s",binnums[d]); // place binary value of d there
}
return strchr(outbuffer,'1'); // omit leading zeros
}
puts(binary(42)); // outputs 101010
void DisplayBinary(int n)
{
int arr[8];
int top =-1;
while (n)
{
if (n & 1)
arr[++top] = 1;
else
arr[++top] = 0;
n >>= 1;
}
for (int i = top ; i > -1;i--)
{
printf("%d",arr[i]);
}
printf("\n");
}
Do a function and call it
display_binary(int n)
{
long int arr[32];
int arr_counter=0;
while(n>=1)
{
arr[arr_counter++]=n%2;
n/=2;
}
for(int i=arr_counter-1;i>=0;i--)
{
printf("%d",arr[i]);
}
}
My solution returns an int which can then be used in printf. It can also return the bits in big endian or little endian order.
#include <stdio.h>
#include <stdint.h>
int binary(uint8_t i,int bigEndian)
{
int j=0,m = bigEndian ? 1 : 10000000;
while (i)
{
j+=m*(i%2);
if (bigEndian) m*=10; else m/=10;
i >>= 1;
}
return j;
}
int main()
{
char buf[]="ABCDEF";
printf("\nbig endian = ");
for (int i=0; i<5; i++) printf("%08d ",binary(buf[i],1));
printf("\nwee endian = ");
for (int i=0; i<5; i++) printf("%08d ",binary(buf[i],0));
getchar();
return 0;
}
Outputs
big endian = 01000001 01000010 01000011 01000100 01000101 01000110
wee endian = 10000010 01000010 11000010 00100010 10100010 01100010
The combination of functions + macro at the end of this answer can help you.
Use it like that:
float float_var = 9.4;
SHOW_BITS(float_var);
Which will output: Variable 'float_var': 01000001 00010110 01100110 01100110
Note that it is very general and can work with pretty much any type. For instance:
struct {int a; float b; double c;} struct_var = {1,1.1,1.2};
SHOW_BITS(struct_var);
Which will output:
Variable `struct_var`: 00111111 11110011 00110011 00110011 00110011 00110011 00110011 00110011 00111111 10001100 11001100 11001101 00000000 00000000 00000000 00000001
Here's the code:
#define SHOW_BITS(a) ({ \
printf("Variable `%s`: ", #a);\
show_bits(&a, sizeof(a));\
})
void show_uchar(unsigned char a)
{
for(int i = 7; i >= 0; i-= 1)
printf("%d", ((a >> i) & 1));
}
void show_bits(void* a, size_t s)
{
unsigned char* p = (unsigned char*) a;
for(int i = s-1; i >= 0 ; i -= 1) {
show_uchar(p[i]);
printf(" ");
}
printf("\n");
}
void print_bits (uintmax_t n)
{
for (size_t i = 8 * sizeof (int); i-- != 0;)
{
char c;
if ((n & (1UL << i)) != 0)
c = '1';
else
c = '0';
printf ("%c", c);
}
}
Not a cover-absolutely-everywhere solution but if you want something quick, and easy to understand, I'm suprised no one has proposed this solution yet.
void PrintBinary( int Value, int Places, char* TargetString)
{
int Mask;
Mask = 1 << Places;
while( Places--) {
Mask >>= 1; /* Preshift, because we did one too many above */
*TargetString++ = (Value & Mask)?'1':'0';
}
*TargetString = 0; /* Null terminator for C string */
}
The calling function "owns" the string...:
char BinaryString[17];
...
PrintBinary( Value, 16, BinaryString);
printf( "yadda yadda %s yadda...\n", BinaryString);
Depending on your CPU, most of the operations in PrintBinary render to one or very few machine instructions.
do { ... } while ( ... );
and postshift instead of preshifting. –
Selfreliant Is there a printf converter to print in binary format?
There's no standard printf format specifier to accomplish "binary" output. Here's the alternative I devised when I needed it.
Mine works for any base from 2 to 36. It fans the digits out into the calling frames of recursive invocations, until it reaches a digit smaller than the base. Then it "traverses" backwards, filling the buffer s forwards, and returning. The return value is the size used or -1 if the buffer isn't large enough to hold the string.
int conv_rad (int num, int rad, char *s, int n) {
char *vec = "0123456789" "ABCDEFGHIJKLM" "NOPQRSTUVWXYZ";
int off;
if (n == 0) return 0;
if (num < rad) { *s = vec[num]; return 1; }
off = conv_rad(num/rad, rad, s, n);
if ((off == n) || (off == -1)) return -1;
s[off] = vec[num%rad];
return off+1;
}
One big caveat: This function was designed for use with "Pascal"-style strings which carry their length around. Consequently conv_rad
, as written, does not nul-terminate the buffer. For more general C uses, it will probably need a simple wrapper to nul-terminate. Or for printing, just change the assignments to putchar()
s.
It might be not very efficient but it's quite simple. Try this:
tmp1 = 1;
while(inint/tmp1 > 1) {
tmp1 <<= 1;
}
do {
printf("%d", tmp2=inint/tmp1);
inint -= tmp1*tmp2;
} while((tmp1 >>= 1) > 0);
printf(" ");
Here's is a very simple one:
int print_char_to_binary(char ch)
{
int i;
for (i=7; i>=0; i--)
printf("%hd ", ((ch & (1<<i))>>i));
printf("\n");
return 0;
}
"h"
useful here? Look equally good without it. –
Sanborn int
anyway so both %d
and %hd
would have to take one int
from the varargs
. –
Australasia (ch & (1<<i))>>i
? –
Sextodecimo void binario(int num) {
for(int i=0;i<32;i++){
(num&(1<i))? printf("1"):
printf("0");
}
printf("\n");
}
The following function returns binary representation of given unsigned integer using pointer arithmetic without leading zeros:
const char* toBinaryString(unsigned long num)
{
static char buffer[CHAR_BIT*sizeof(num)+1];
char* pBuffer = &buffer[sizeof(buffer)-1];
do *--pBuffer = '0' + (num & 1);
while (num >>= 1);
return pBuffer;
}
Note that there is no need to explicity set NUL
terminator, because buffer
repesents an object with static storage duration, that is already filled with all-zeros.
This can be easily adapted to unsigned long long
(or another unsigned integer) by simply modifing type of num
formal parameter.
The CHAR_BIT
requires <limits.h>
to be included.
Here is an example usage:
int main(void)
{
printf(">>>%20s<<<\n", toBinaryString(1));
printf(">>>%-20s<<<\n", toBinaryString(254));
return 0;
}
with its desired output as:
>>> 1<<<
>>>11111110 <<<
Use below function:
void conbin(int num){
if(num != 0)
{
conbin(num >> 1);
if (num & 1){
printf("1");
}
else{
printf("0");
}
}
}
This is my take on this subject.
Advantages to most other examples:
putchar()
which is more efficient than printf()
or even (although not as much) puts()
Disadvantages to most examples:
print_binary_size()
modifies the input variable without a copy.Note: The best outcome for this code relies on using -O1
or higher in gcc
or equivalent.
Here's the code:
inline void print_binary_sized(unsigned int number, unsigned int digits) {
static char ZERO = '0';
int digitsLeft = digits;
do{
putchar(ZERO + ((number >> digitsLeft) & 1));
}while(digitsLeft--);
}
void print_binary(unsigned int number) {
int digitsLeft = sizeof(number) * 8;
while((~(number >> digitsLeft) & 1) && digitsLeft){
digitsLeft--;
}
print_binary_sized(number, digitsLeft);
}
print_binary_size()
can't modify its input since it's passed by value. It modifies its copy of the input and so is not a disadvantage. –
Subequatorial // m specifies how many of the low bits are shown.
// Replace m with sizeof(n) below for all bits and
// remove it from the parameter list if you like.
void print_binary(unsigned long n, unsigned long m) {
static char show[3] = "01";
unsigned long mask = 1ULL << (m-1);
while(mask) {
putchar(show[!!(n&mask)]); mask >>= 1;
}
putchar('\n');
}
Main.c
// Based on https://mcmap.net/q/16392/-is-there-a-printf-converter-to-print-in-binary-format
#include <stdio.h>
#include <stdint.h>
const char *int_to_binary_str(int x, int N_bits){
static char b[512];
char *p = b;
b[0] = '\0';
for(int i=(N_bits-1); i>=0; i--){
*p++ = (x & (1<<i)) ? '1' : '0';
if(!(i%4)) *p++ = ' ';
}
return b;
}
int main() {
for(int i=31; i>=0; i--){
printf("0x%08X %s \n", (1<<i), int_to_binary_str((1<<i), 32));
}
return 0;
}
Expected behavior:
Run:
gcc -pthread -Wformat=0 -lm -o main main.c; ./main
Output:
0x80000000 1000 0000 0000 0000 0000 0000 0000 0000
0x40000000 0100 0000 0000 0000 0000 0000 0000 0000
0x20000000 0010 0000 0000 0000 0000 0000 0000 0000
0x10000000 0001 0000 0000 0000 0000 0000 0000 0000
0x08000000 0000 1000 0000 0000 0000 0000 0000 0000
0x04000000 0000 0100 0000 0000 0000 0000 0000 0000
0x02000000 0000 0010 0000 0000 0000 0000 0000 0000
0x01000000 0000 0001 0000 0000 0000 0000 0000 0000
0x00800000 0000 0000 1000 0000 0000 0000 0000 0000
0x00400000 0000 0000 0100 0000 0000 0000 0000 0000
0x00200000 0000 0000 0010 0000 0000 0000 0000 0000
0x00100000 0000 0000 0001 0000 0000 0000 0000 0000
0x00080000 0000 0000 0000 1000 0000 0000 0000 0000
0x00040000 0000 0000 0000 0100 0000 0000 0000 0000
0x00020000 0000 0000 0000 0010 0000 0000 0000 0000
0x00010000 0000 0000 0000 0001 0000 0000 0000 0000
0x00008000 0000 0000 0000 0000 1000 0000 0000 0000
0x00004000 0000 0000 0000 0000 0100 0000 0000 0000
0x00002000 0000 0000 0000 0000 0010 0000 0000 0000
0x00001000 0000 0000 0000 0000 0001 0000 0000 0000
0x00000800 0000 0000 0000 0000 0000 1000 0000 0000
0x00000400 0000 0000 0000 0000 0000 0100 0000 0000
0x00000200 0000 0000 0000 0000 0000 0010 0000 0000
0x00000100 0000 0000 0000 0000 0000 0001 0000 0000
0x00000080 0000 0000 0000 0000 0000 0000 1000 0000
0x00000040 0000 0000 0000 0000 0000 0000 0100 0000
0x00000020 0000 0000 0000 0000 0000 0000 0010 0000
0x00000010 0000 0000 0000 0000 0000 0000 0001 0000
0x00000008 0000 0000 0000 0000 0000 0000 0000 1000
0x00000004 0000 0000 0000 0000 0000 0000 0000 0100
0x00000002 0000 0000 0000 0000 0000 0000 0000 0010
0x00000001 0000 0000 0000 0000 0000 0000 0000 0001
Simple, tested, works for any unsigned integer type. No headaches.
#include <stdint.h>
#include <stdio.h>
// Prints the binary representation of any unsigned integer
// When running, pass 1 to first_call
void printf_binary(unsigned int number, int first_call)
{
if (first_call)
{
printf("The binary representation of %d is [", number);
}
if (number >> 1)
{
printf_binary(number >> 1, 0);
putc((number & 1) ? '1' : '0', stdout);
}
else
{
putc((number & 1) ? '1' : '0', stdout);
}
if (first_call)
{
printf("]\n");
}
}
As for me, I wrote some general code for this
#include<stdio.h>
void int2bin(int n, int* bin, int* bin_size, const int bits);
int main()
{
char ch;
ch = 'A';
int binary[32];
int binary_size = 0;
int2bin(1324, binary, &binary_size, 32);
for (int i = 0; i < 32; i++)
{
printf("%d ", binary[i]);
}
return 0;
}
void int2bin(int n, int* bin,int *bin_size,const int bits)
{
int i = 0;
int temp[64];
for (int j = 0; j < 64; j++)
{
temp[j] = 0;
}
for (int l = 0; l < bits; l++)
{
bin[l] = 0;
}
while (n > 0)
{
temp[i] = n % 2;
n = n / 2;
i++;
}
*bin_size = i;
//reverse modulus values
for (int k = 0; k < *bin_size; k++)
{
bin[bits-*bin_size+k] = temp[*bin_size - 1 - k];
}
}
You don't need to physically even enumerate the bits to generate all the bit-strings for a lookup table -
given an integer n := [0, 4]
as input, it would enumerate all permutations of bit-strings for 2 ** n
bits, in pre-sorted order, using nothing but regular expressions (regex)
— enumerating every base4 pair of bits is n = 1
,
— enumerating every base16 hex is n = 2
,
— enumerating every byte is n = 3
, since 2 ^ 3 = 8
— enumerating every short-int is n = 4
(even the 64GB ram on my laptop couldn't handle an input of 5, which would, theoretically return every single 4-byte
bit string permutation, with a resulting output at least 128 GB
in size … via just 5 cycles of a while()
loop)
out9: 667 B 0:00:00 [17.7MiB/s] [17.7MiB/s] [<=> ]
1
2 ^ 2 ^ ( 0 ) =
all permutations of 1-bit bit-strings
4
0, 1
0, 1
2 # gawk profile, created Wed May 17 00:50:19 2023
3 # BEGIN rule(s)
4 BEGIN {
5 1 OFS = "\f\r\t"
6 1 print " \f\t" (_ += _ ^= _ < _) " ^ " (_)\
" ^ ( " (+__) " ) = \fall permutations of "\
(_++ ^ __) "-bit bit-strings",
_____ = length(___ = ____(__)),
substr(___,__ = !!++_,_ *= _*_),
substr(___,_____ + __ - _), ""
7 }
8 # Functions, listed alphabetically
9 1 function ____(__, _, ___)
10 {
11 1 if (+(_ = "&0&1") < (__ += ___ = "[&][01]+")) {
12 while (__--) {
13 gsub(___, _, _)
14 }
15 }
16 1 gsub(__ = "[&]", ", ", _)
17 1 return substr(_, length(__))
18 }
( gawk -v __="$__" -p- -be ; ) 0.00s user 0.00s system 64% cpu 0.007 total
out9: 706 B 0:00:00 [25.9MiB/s] [25.9MiB/s] [<=> ]
1
2 ^ 2 ^ ( 1 ) =
all permutations of 2-bit bit-strings
14
00, 01, 10, 11
00, 01, 10, 11
2 # gawk profile, created Wed May 17 00:50:19 2023
8 # Functions, listed alphabetically
9 1 function ____(__, _, ___)
10 {
11 1 if (+(_ = "&0&1") < (__ += ___ = "[&][01]+")) { # 1
12 1 while (__--) {
13 1 gsub(___, _, _)
14 }
15 }
16 1 gsub(__ = "[&]", ", ", _)
17 1 return substr(_, length(__))
18 }
( gawk -v __="$__" -p- -be ; ) 0.00s user 0.00s system 63% cpu 0.007 total
out9: 806 B 0:00:00 [28.5MiB/s] [28.5MiB/s] [<=> ]
1
2 ^ 2 ^ ( 2 ) =
all permutations of 4-bit bit-strings
94
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010
0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111
2 # gawk profile, created Wed May 17 00:50:19 2023
8 # Functions, listed alphabetically
9 1 function ____(__, _, ___)
10 {
11 1 if (+(_ = "&0&1") < (__ += ___ = "[&][01]+")) { # 1
12 2 while (__--) {
13 2 gsub(___, _, _)
14 }
15 }
16 1 gsub(__ = "[&]", ", ", _)
17 1 return substr(_, length(__))
18 }
( gawk -v __="$__" -p- -be ; ) 0.00s user 0.00s system 63% cpu 0.006 total
out9: 808 B 0:00:00 [18.3MiB/s] [18.3MiB/s] [<=> ]
1
2 ^ 2 ^ ( 3 ) =
all permutations of 8-bit bit-strings
2558
00000000, 00000001, 00000010, 00000011, 00000100, 00000101, 0000
1001, 11111010, 11111011, 11111100, 11111101, 11111110, 11111111
2 # gawk profile, created Wed May 17 00:50:20 2023
8 # Functions, listed alphabetically
9 1 function ____(__, _, ___)
10 {
11 1 if (+(_ = "&0&1") < (__ += ___ = "[&][01]+")) { # 1
12 3 while (__--) {
13 3 gsub(___, _, _)
14 }
15 }
16 1 gsub(__ = "[&]", ", ", _)
17 1 return substr(_, length(__))
18 }
( gawk -v __="$__" -p- -be ; ) 0.00s user 0.00s system 62% cpu 0.007 total
out9: 812 B 0:00:00 [22.8MiB/s] [22.8MiB/s] [<=> ]
1
2 ^ 2 ^ ( 4 ) =
all permutations of 16-bit bit-strings
1179646
0000000000000000, 0000000000000001, 0000000000000010, 0000000000
1111111100, 1111111111111101, 1111111111111110, 1111111111111111
2 # gawk profile, created Wed May 17 00:50:20 2023
9 1 function ____(__, _, ___)
10 {
11 1 if (+(_ = "&0&1") < (__ += ___ = "[&][01]+")) { # 1
12 4 while (__--) {
13 4 gsub(___, _, _)
14 }
15 }
16 1 gsub(__ = "[&]", ", ", _)
17 1 return substr(_, length(__))
18 }
( gawk -v __="$__" -p- -be ; ) 0.01s user 0.00s system 80% cpu 0.013 total
To generate them in bit-inverted manner, change the starting point from _ = "&0&1"
—> _ = "&1&0"
::
2 ^ 2 ^ ( 2 ) =
all permutations of 4-bit bit-strings
94
1111, 1110, 1101, 1100, 1011, 1010, 1001, 1000, 0111, 0110, 0101
1010, 1001, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000
To generate them in a bit-reflected manner (e.g. for CRC
), change both
_ = "&0&1"
—>_ = "0&1&"
, and also___ = "[&][01]+"
—>___ = "[01]+[&]"
out9: 200 B 0:00:00 [5.61MiB/s] [5.61MiB/s] [<=> ]
2 ^ 2 ^ ( 2 ) =
all permutations of 4-bit bit-strings
94
0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110, 0001, 1001, 0101
1010, 0110, 1110, 0001, 1001, 0101, 1101, 0011, 1011, 0111, 1111
( mawk2 -v __="$__" -- ; ) 0.00s user 0.00s system 71% cpu 0.004 total
Even for the runtime libraries that DO support %b it seems it's only for integer values.
If you want to print floating-point values in binary, I wrote some code you can find at http://www.exploringbinary.com/converting-floating-point-numbers-to-binary-strings-in-c/ .
© 2022 - 2024 — McMap. All rights reserved.
1010
is that it? – Soundless