As Joe points out, if you want to do this for positive integer powers, you can use NSDecimalPower()
on an NSDecimal struct derived from your NSDecimalNumber (I personally prefer working with the structs, for performance reasons).
For the more general case of working with negative integers and fractional values, I have some code that I've modified from Dave DeLong's DDMathParser library. He has since removed the NSDecimal portion of this library, but you can find the last commit for this support. I extended Dave's exponential support into the following function:
extern NSDecimal DDDecimalPower(NSDecimal d, NSDecimal power) {
NSDecimal r = DDDecimalOne();
NSDecimal zero = DDDecimalZero();
NSComparisonResult compareToZero = NSDecimalCompare(&zero, &power);
if (compareToZero == NSOrderedSame) {
return r;
}
if (DDDecimalIsInteger(power))
{
if (compareToZero == NSOrderedAscending)
{
// we can only use the NSDecimal function for positive integers
NSUInteger p = DDUIntegerFromDecimal(power);
NSDecimalPower(&r, &d, p, NSRoundBankers);
}
else
{
// For negative integers, we can take the inverse of the positive root
NSUInteger p = DDUIntegerFromDecimal(power);
p = -p;
NSDecimalPower(&r, &d, p, NSRoundBankers);
r = DDDecimalInverse(r);
}
} else {
// Check whether this is the inverse of an integer
NSDecimal inversePower = DDDecimalInverse(power);
NSDecimalRound(&inversePower, &inversePower, 34, NSRoundBankers); // Round to 34 digits to deal with cases like 1/3
if (DDDecimalIsInteger(inversePower))
{
r = DDDecimalNthRoot(d, inversePower);
}
else
{
double base = DDDoubleFromDecimal(d);
double p = DDDoubleFromDecimal(power);
double result = pow(base, p);
r = DDDecimalFromDouble(result);
}
}
return r;
}
This runs exact calculations on positive integer powers, negative integer powers, and fractional powers that map directly to roots. It still falls back on floating point calculations for fractional powers that don't cleanly fall into one of those bins, though.
Unfortunately, this requires a few of his other supporting functions to work. Therefore, I've uploaded my enhanced versions of his _DDDecimalFunctions.h and _DDDecimalFunctions.m that provide this functionality. They also include NSDecimal trigonometry, logarithm, and a few other functions. There are currently some issues with convergence on the tangent implementation, which is why I haven't finished a public post about this.
value2
limited in any way? – Nevile