Calculating angular velocity after a collision
Asked Answered
D

1

6

I've got the linear component of collision resolution down relatively well, but I can't quite figure out how to do the same for the angular one. From what I've read, it's something like... torque = point of collision x linear velocity. (cross product) I tried to incorporate an example I found into my code but I actually don't see any rotation at all when objects collide. The other fiddle works perfectly with a rudimentary implementation of the seperating axis theorem and the angular velocity calculations. Here's what I've come up with...

Property definitions (orientation, angular velocity, and angular acceleration):

rotation: 0,
angularVelocity: 0,
angularAcceleration: 0

Calculating the angular velocity in the collision response:

var pivotA = this.vector(bodyA.x, bodyA.y);
bodyA.angularVelocity = 1 * 0.2 * (bodyA.angularVelocity / Math.abs(bodyA.angularVelocity)) * pivotA.subtract(isCircle ? pivotA.add(bodyA.radius) : {
  x: pivotA.x + boundsA.width,
  y: pivotA.y + boundsA.height
}).vCross(bodyA.velocity);
var pivotB = this.vector(bodyB.x, bodyB.y);
bodyB.angularVelocity = 1 * 0.2 * (bodyB.angularVelocity / Math.abs(bodyB.angularVelocity)) * pivotB.subtract(isCircle ? pivotB.add(bodyB.radius) : {
  x: pivotB.x + boundsB.width,
  y: pivotB.y + boundsB.height
}).vCross(bodyB.velocity);

Updating the orientation in the update loop:

var torque = 0;
torque += core.objects[o].angularVelocity * -1;
core.objects[o].angularAcceleration = torque / core.objects[o].momentOfInertia();
core.objects[o].angularVelocity += core.objects[o].angularAcceleration;
core.objects[o].rotation += core.objects[o].angularVelocity;

I would post the code that I have for calculating the moments of inertia but there's a seperate one for every object so that would be a bit... lengthy. Nonetheless, here's the one for a circle as an example:

return this.mass * this.radius * this.radius / 2;

Just to show the result, here's my fiddle. As shown, objects do not rotate on collision. (not exactly visible with the circles, but it should work for the zero and seven)

What am I doing wrong?

EDIT: Reason they weren't rotating at all was because of an error with groups in the response function -- it rotates now, just not correctly. However, I've commented that out for now as it messes things up.

Also, I've tried another method for rotation. Here's the code in the response:

_bodyA.angularVelocity = direction.vCross(_bodyA.velocity) / (isCircle ? _bodyA.radius : boundsA.width);
_bodyB.angularVelocity = direction.vCross(_bodyB.velocity) / (isCircle ? _bodyB.radius : boundsB.width);

Note that direction refers to the "collision normal".

Dorsy answered 22/4, 2016 at 3:47 Comment(8)
make make a fiddle for yoursRigobertorigor
Er... I did. And I linked to it. But here it is again...Dorsy
Do you something like this in mind: #29911002Fia
@markE - Problem's been fixed. I had a few extra curly braces. K3N - Not exactly. I need angular velocity, not linear.Dorsy
@Raiden. What is your assumed coefficient of friction -- zero?Broadway
Since I'm not factoring that in yet, assume its 0.5.Dorsy
change in angular momentum = position wrt CofM x linear impulse delivered to body; angular velocity = (inertia mass matrix)^-1 x angular momentumMoriahmoriarty
What's 'WRT'? CofM? Coeffecient of...? Inertia mass matrix?Dorsy
G
15

Angular and linear acceleration due to force vector

Angular and directional accelerations due to an applied force are two components of the same thing and can not be separated. To get one you need to solve for both.

Define the calculations

From simple physics and standing on shoulders we know the following.

F is force (equivalent to inertia)
Fv is linear force
Fa is angular force
a is acceleration could be linear or rotational depending on where it is used
v is velocity. For angular situations it is the tangential component only
m is mass
r is radius

For linear forces

F = m * v 

From which we derive

m = F / v
v = F / m

For rotational force (v is tangential velocity)

F = r * r * m * (v / r) and simplify F = r * m * v

From which we derive

m = F / ( r * v )
v = F / ( r * m )
r = F / ( v * m )

Because the forces we apply are instantaneous we can interchange a acceleration and v velocity to give all the following formulas

Linear

F = m * a  
m = F / a
a = F / m

Rotational

F = r * m * a
m = F / ( r * a )
a = F / ( r * m )
r = F / ( a * m )

As we are only interested in the change in velocity for both linear and rotation solutions

a1 = F / m
a2 = F / ( r * m ) 

Where a1 is acceleration in pixels per frame2 and a2 is acceleration in radians per frame2 ( the frame squared just denotes it is acceleration)

From 1D to 2D

Because this is a 2D solution and all above are 1D we need to use vectors. I for this problem use two forms of the 2D vector. Polar that has a magnitude (length, distance, the like...) and direction. Cartesian which has x and y. What a vector represents depends on how it is used.

The following functions are used as helpers in the solution. They are written in ES6 so for non compliant browsers you will have to adapt them, though I would not ever suggest you use these as they are written for convenience, they are very inefficient and do a lot of redundant calculations.

Converts a vector from polar to cartesian returning a new one

function polarToCart(pVec, retV = {x : 0, y : 0}) {
    retV.x = Math.cos(pVec.dir) * pVec.mag;
    retV.y = Math.sin(pVec.dir) * pVec.mag;
    return retV;
}

Converts a vector from cartesian to polar returning a new one

function cartToPolar(vec, retV = {dir : 0, mag : 0}) {
    retV.dir = Math.atan2(vec.y, vec.x);
    retV.mag = Math.hypot(vec.x, vec.y);
    return retV;
}

Creates a polar vector

function polar(mag = 1, dir = 0) {
    return validatePolar({dir : dir,mag : mag});
}

Create a vector as a cartesian

function vector(x = 1, y = 0) {
    return {x : x, y : y};
} 

True is the arg vec is a vector in polar form

function isPolar(vec) {
    if (vec.mag !== undefined && vec.dir !== undefined) {return true;}
    return false;
}

Returns true if arg vec is a vector in cartesian form

function isCart(vec) {
    if (vec.x !== undefined && vec.y !== undefined) {return true;}
    return false;
} 

Returns a new vector in polar form also ensures that vec.mag is positive

function asPolar(vec){
     if(isCart(vec)){ return cartToPolar(vec); }
     if(vec.mag < 0){
         vec.mag = - vec.mag;
         vec.dir += PI;
     }
     return { dir : vec.dir, mag : vec.mag };
}

Copy and converts an unknown vec to cart if not already

function asCart(vec){
     if(isPolar(vec)){ return polarToCart(vec); }
     return { x : vec.x, y : vec.y};
}

Calculations can result in a negative magnitude though this is valid for some calculations this results in the incorrect vector (reversed) this simply validates that the polar vector has a positive magnitude it does not change the vector just the sign and direction

function validatePolar(vec) {
    if (isPolar(vec)) {
        if (vec.mag < 0) {
            vec.mag =  - vec.mag;
            vec.dir += PI;
        }
    }
    return vec;
}

The Box

Now we can define an object that we can use to play with. A simple box that has position, size, mass, orientation, velocity and rotation

function createBox(x,y,w,h){
    var box = {
        x : x,   // pos
        y : y,
        r : 0.1,   // its rotation AKA orientation or direction in radians
        h : h,  // its height
        w : w,  // its width
        dx : 0, // delta x  in pixels per frame 1/60th second
        dy : 0, // delta y
        dr : 0.0, // deltat rotation in radians  per frame 1/60th second
        mass : w * h, // mass in things
        update :function(){
            this.x += this.dx;
            this.y += this.dy;
            this.r += this.dr;
        },
    }
    return box;
}    

Applying a force to an object

So now we can redefine some terms

F (force) is a vector force the magnitude is the force and it has a direction

var force = polar(100,0); // create a force 100 units to the right (0 radians)

The force is meaningless without a position where it is applied.

Position is a vector that just holds and x and y location

var location = vector(canvas.width/2, canvas.height/2);  // defines a point in the middle of the canvas

Directional vector holds the direction and distance between to positional vectors

var l1 = vector(canvas.width/2, canvas.height/2);  // defines a point in the middle of the canvas
var l2 = vector(100,100);
var direction = asPolar(vector(l2.x - l1.x, l2.y - l1.y)); // get the direction as polar vector

direction now has the direction from canvas center to point (100,100) and the distance.

The last thing we need to do is extract the components from a force vector along a directional vector. When you apply a force to an object the force is split into two, one is the force along the line to the object center and adds to the object acceleration, the other force is at 90deg to the line to the object center (the tangent) and that is the force that changes rotation.

To get the two components you get the difference in direction between the force vector and the directional vector from where the force is applied to the object center.

var force = polar(100,0);  // the force
var forceLoc = vector(50,50);  // the location the force is applied

var direction2Center = asPolar(vector(box.x - forceLoc.x, box.y - forceLoc.y)); // get the direction as polar vector
var pheta = direction2Center - force.dir; // get the angle between the force and object center   

Now that you have that angle pheta the force can be split into its rotational and linear components with trig.

var F = force.mag; // get the force magnitude
var Fv = Math.cos(pheta) * F; // get the linear force
var Fa = Math.sin(pheta) * F; // get the angular force 

Now the forces can be converted back to accelerations for linear a = F/m and angular a = F/(m*r)

accelV = Fv / box.mass; // linear acceleration in pixels
accelA = Fa / (box.mass * direction2Center.mag); // angular acceleration in radians

You then convert the linear force back to a vector that has a direction to the center of the object

var forceV = polar(Fv, direction2Center);

Convert is back to the cartesian so we can add it to the object deltaX and deltaY

forceV = asCart(forceV);

And add the acceleration to the box

box.dx += forceV.x;    
box.dy += forceV.y;    

Rotational acceleration is just one dimensional so just add it to the delta rotation of the box

box.dr += accelA;

And that is it.

Function to apply force to Box

The function if attached to the box will apply a force vector at a location to the box.

Attach to the box like so

box.applyForce = applyForce; // bind function to the box;

You can then call the function via the box

box.applyForce(force, locationOfForce);


function applyForce(force, loc){ // force is a vector, loc is a coordinate
    var toCenter = asPolar(vector(this.x - loc.x, this.y - loc.y)); // get the vector to the center
    var pheta = toCenter.dir - force.dir;  // get the angle between the force and the line to center
    var Fv = Math.cos(pheta) * force.mag;  // Split the force into the velocity force along the line to the center
    var Fa = Math.sin(pheta) * force.mag;  // and the angular force at the tangent to the line to the center
    var accel = asPolar(toCenter); // copy the direction to center
    accel.mag = Fv / this.mass; // now use F = m * a in the form a = F/m to get acceleration
    var deltaV = asCart(accel); // convert acceleration to cartesian 
    this.dx += deltaV.x // update the box delta V
    this.dy += deltaV.y //
    var accelA = Fa / (toCenter.mag  * this.mass); // for the angular component get the rotation
                                                   // acceleration from F=m*a*r in the 
                                                   // form a = F/(m*r)
    this.dr += accelA;// now add that to the box delta r
}

The Demo

The demo is only about the function applyForce the stuff to do with gravity and bouncing are only very bad approximations and should not be used for any physic type of stuff as they do not conserve energy.

Click and drag to apply a force to the object in the direction that the mouse is moved.

const PI90 = Math.PI / 2;
const PI = Math.PI;
const PI2 = Math.PI * 2;

const INSET = 10; // playfeild inset

const ARROW_SIZE = 6
const SCALE_VEC = 10;
const SCALE_FORCE = 0.15;
const LINE_W = 2;
const LIFE = 12;
const FONT_SIZE = 20;
const FONT = "Arial Black";
const WALL_NORMS = [PI90,PI,-PI90,0]; // dirction of the wall normals


var box = createBox(200, 200, 50, 100);
box.applyForce = applyForce; // Add this function to the box
// render / update function


var mouse = (function(){
    function preventDefault(e) { e.preventDefault(); }
    var i;
    var mouse = {
        x : 0, y : 0,buttonRaw : 0,
        bm : [1, 2, 4, 6, 5, 3], // masks for setting and clearing button raw bits;
        mouseEvents : "mousemove,mousedown,mouseup".split(",")
    };
    function mouseMove(e) {
        var t = e.type, m = mouse;
        m.x = e.offsetX; m.y = e.offsetY;
        if (m.x === undefined) { m.x = e.clientX; m.y = e.clientY; }
        if (t === "mousedown") { m.buttonRaw |= m.bm[e.which-1];
        } else if (t === "mouseup") { m.buttonRaw &= m.bm[e.which + 2];}
        e.preventDefault();
    }
    mouse.start = function(element = document){
        if(mouse.element !== undefined){ mouse.removeMouse();}
        mouse.element = element;
        mouse.mouseEvents.forEach(n => { element.addEventListener(n, mouseMove); } );
    }
    mouse.remove = function(){
        if(mouse.element !== undefined){
            mouse.mouseEvents.forEach(n => { mouse.element.removeEventListener(n, mouseMove); } );
            mouse.element = undefined;
        }
    }
    return mouse;
})();


var canvas,ctx;
function createCanvas(){
    canvas = document.createElement("canvas"); 
    canvas.style.position = "absolute";
    canvas.style.left     = "0px";
    canvas.style.top      = "0px";
    canvas.style.zIndex   = 1000;
    document.body.appendChild(canvas); 
}
function resizeCanvas(){
    if(canvas === undefined){
        createCanvas();
    }
    canvas.width          = window.innerWidth;
    canvas.height         = window.innerHeight; 
    ctx            = canvas.getContext("2d"); 
    if(box){
      box.w = canvas.width * 0.10;
      box.h = box.w * 2;
      box.mass = box.w * box.h;
    }
}

window.addEventListener("resize",resizeCanvas);
resizeCanvas();
mouse.start(canvas)





var tempVecs = [];
function addTempVec(v,vec,col,life = LIFE,scale = SCALE_VEC){tempVecs.push({v:v,vec:vec,col:col,scale:scale,life:life,sLife:life});}
function drawTempVecs(){
    for(var i = 0; i < tempVecs.length; i ++ ){
        var t = tempVecs[i]; t.life -= 1;
        if(t.life <= 0){tempVecs.splice(i, 1); i--; continue}
        ctx.globalAlpha = (t.life / t.sLife)*0.25;
        drawVec(t.v, t.vec ,t.col, t.scale)
    }
}
function drawVec(v,vec,col,scale = SCALE_VEC){
    vec = asPolar(vec)
    ctx.setTransform(1,0,0,1,v.x,v.y);
    var d = vec.dir;
    var m = vec.mag;
    ctx.rotate(d);
    ctx.beginPath();
    ctx.lineWidth = LINE_W;
    ctx.strokeStyle = col;
    ctx.moveTo(0,0);
    ctx.lineTo(m * scale,0);
    ctx.moveTo(m * scale-ARROW_SIZE,-ARROW_SIZE);
    ctx.lineTo(m * scale,0);
    ctx.lineTo(m * scale-ARROW_SIZE,ARROW_SIZE);
    ctx.stroke();
}
function drawText(text,x,y,font,size,col){
    ctx.font = size + "px "+font;
    ctx.textAlign = "center";
    ctx.textBaseline = "middle";
    ctx.setTransform(1,0,0,1,x,y);
    ctx.globalAlpha = 1;
    ctx.fillStyle = col;
    ctx.fillText(text,0,0);
}
function createBox(x,y,w,h){
    var box = {
        x : x,   // pos
        y : y,
        r : 0.1,   // its rotation AKA orientation or direction in radians
        h : h,  // its height, and I will assume that its depth is always equal to its height
        w : w,  // its width
        dx : 0, // delta x  in pixels per frame 1/60th second
        dy : 0, // delta y
        dr : 0.0, // deltat rotation in radians  per frame 1/60th second
        getDesc : function(){
          var vel = Math.hypot(this.dx ,this.dy);
          var radius = Math.hypot(this.w,this.h)/2
          var rVel = Math.abs(this.dr * radius);
          var str = "V " + (vel*60).toFixed(0) + "pps ";
          str += Math.abs(this.dr * 60 * 60).toFixed(0) + "rpm ";
          str += "Va " + (rVel*60).toFixed(0) + "pps ";

          return str;
        },
        mass : function(){ return (this.w * this.h * this.h)/1000; }, // mass in K things
        draw : function(){
            ctx.globalAlpha = 1;
            ctx.setTransform(1,0,0,1,this.x,this.y);
            ctx.rotate(this.r);
            ctx.fillStyle = "#444";
            ctx.fillRect(-this.w/2, -this.h/2, this.w, this.h)
            ctx.strokeRect(-this.w/2, -this.h/2, this.w, this.h)
        },
        update :function(){
            this.x += this.dx;
            this.y += this.dy;
            this.dy += 0.061; // alittle gravity
            this.r += this.dr;
        },
        getPoint : function(which){
            var dx,dy,x,y,xx,yy,velocityA,velocityT,velocity;
            dx = Math.cos(this.r);
            dy = Math.sin(this.r);
            switch(which){
                case 0:
                    x = -this.w /2;
                    y = -this.h /2;
                    break;
                case 1:
                    x = this.w /2;
                    y = -this.h /2;
                    break;
                case 2:
                    x = this.w /2;
                    y = this.h /2;
                    break;
                case 3:
                    x = -this.w /2;
                    y = this.h /2;
                    break;
                case 4:
                    x = this.x;
                    y = this.y;
            }
            var xx,yy;
            xx = x * dx + y * -dy;
            yy = x * dy + y * dx;
            var details = asPolar(vector(xx, yy))
            xx += this.x;
            yy += this.y;
            velocityA =  polar(details.mag * this.dr, details.dir + PI90);
            velocityT = vectorAdd(velocity = vector(this.dx, this.dy), velocityA);
            return {
                velocity : velocity,  // only directional
                velocityT : velocityT,  // total
                velocityA :  velocityA, // angular only
                pos : vector(xx, yy),
                radius : details.mag,
            }
        },
    }
    box.mass = box.mass(); // Mass remains the same so just set it with its function
    return box;
}
// calculations can result in a negative magnitude though this is valide for some
// calculations this results in the incorrect vector (reversed)
// this simply validates that the polat vector has a positive magnitude
// it does not change the vector just the sign and direction
function validatePolar(vec){
    if(isPolar(vec)){
        if(vec.mag < 0){
            vec.mag = - vec.mag;
            vec.dir += PI;
        }
    }
    return vec;
}
// converts a vector from polar to cartesian returning a new one
function polarToCart(pVec, retV = {x : 0, y : 0}){
     retV.x = Math.cos(pVec.dir) * pVec.mag;
     retV.y = Math.sin(pVec.dir) * pVec.mag;
     return retV;
}
// converts a vector from cartesian to polar returning a new one
function cartToPolar(vec, retV  = {dir : 0, mag : 0}){
     retV.dir = Math.atan2(vec.y,vec.x);
     retV.mag = Math.hypot(vec.x,vec.y);
     return retV;
}
function polar (mag = 1, dir = 0) { return validatePolar({dir : dir, mag : mag}); } // create a polar vector
function vector (x= 1, y= 0) { return {x: x, y: y}; } // create a cartesian vector
function isPolar (vec) { if(vec.mag !== undefined && vec.dir !== undefined) { return true; } return false; }// returns true if polar
function isCart (vec) { if(vec.x !== undefined && vec.y !== undefined) { return true; } return false; }// returns true if cartesian 
// copy and converts an unknown vec to polar if not already
function asPolar(vec){
     if(isCart(vec)){ return cartToPolar(vec); }
     if(vec.mag < 0){
         vec.mag = - vec.mag;
         vec.dir += PI;
     }
     return { dir : vec.dir, mag : vec.mag };
}
// copy and converts an unknown vec to cart if not already
function asCart(vec){
     if(isPolar(vec)){ return polarToCart(vec); }
     return { x : vec.x, y : vec.y};
}
// normalise makes a vector a unit length and returns it as a cartesian 
function normalise(vec){
     var vp = asPolar(vec);
     vap.mag = 1;
     return asCart(vp);
}
function vectorAdd(vec1, vec2){
    var v1 = asCart(vec1);
    var v2 = asCart(vec2);
    return vector(v1.x + v2.x, v1.y + v2.y);
}
// This splits the vector (polar or cartesian) into the components along  dir and the tangent to that dir
function vectorComponentsForDir(vec,dir){
    var v = asPolar(vec); // as polar
    var pheta = v.dir - dir;
    var Fv = Math.cos(pheta) * v.mag;
    var Fa = Math.sin(pheta) * v.mag;

    var d1 = dir;
    var d2 = dir + PI90;    
    if(Fv < 0){
        d1 += PI;
        Fv = -Fv;
    }

    if(Fa < 0){
        d2 += PI;
        Fa = -Fa;
    }
    return {
        along : polar(Fv,d1),
        tangent : polar(Fa,d2)
    };
}

function doCollision(pointDetails, wallIndex){
    var vv = asPolar(pointDetails.velocity); // Cartesian V make sure the velocity is in cartesian form
    var va = asPolar(pointDetails.velocityA); // Angular V make sure the velocity is in cartesian form
    var vvc = vectorComponentsForDir(vv, WALL_NORMS[wallIndex])            
    var vac = vectorComponentsForDir(va, WALL_NORMS[wallIndex])            
    vvc.along.mag *= 1.18; // Elastic collision requiers that the two equal forces from the wall
    vac.along.mag *= 1.18; // against the box and the box against the wall be summed. 
                          // As the wall can not move the result is that the force is twice 
                          // the force the box applies to the wall (Yes and currently force is in 
                          // velocity form untill the next line)
    vvc.along.mag *= box.mass; // convert to force
    //vac.along.mag/= pointDetails.radius
    vac.along.mag *= box.mass
    vvc.along.dir += PI; // force is in the oppisite direction so turn it 180
    vac.along.dir += PI; // force is in the oppisite direction so turn it 180
    // split the force into components based on the wall normal. One along the norm the 
    // other along the wall


    vvc.tangent.mag *= 0.18;  // add friction along the wall 
    vac.tangent.mag *= 0.18;
    vvc.tangent.mag *= box.mass  //
    vac.tangent.mag *= box.mass
    vvc.tangent.dir += PI; // force is in the oppisite direction so turn it 180
    vac.tangent.dir += PI; // force is in the oppisite direction so turn it 180



    // apply the force out from the wall
    box.applyForce(vvc.along, pointDetails.pos)    
    // apply the force along the wall
    box.applyForce(vvc.tangent, pointDetails.pos)    
    // apply the force out from the wall
    box.applyForce(vac.along, pointDetails.pos)    
    // apply the force along the wall
    box.applyForce(vac.tangent, pointDetails.pos)    
    //addTempVec(pointDetails.pos, vvc.tangent, "red", LIFE, 10)
    //addTempVec(pointDetails.pos, vac.tangent, "red", LIFE, 10)

}


function applyForce(force, loc){ // force is a vector, loc is a coordinate
    validatePolar(force); // make sure the force is a valid polar
   // addTempVec(loc, force,"White", LIFE, SCALE_FORCE) // show the force
    var l = asCart(loc); // make sure the location is in cartesian form
    var  toCenter = asPolar(vector(this.x - l.x, this.y - l.y));
    var pheta = toCenter.dir - force.dir;
    var Fv = Math.cos(pheta) * force.mag;
    var Fa = Math.sin(pheta) * force.mag;
    var accel = asPolar(toCenter); // copy the direction to center
    accel.mag = Fv / this.mass; // now use F = m * a in the form a = F/m
    var deltaV = asCart(accel); // convert it to cartesian 
    this.dx += deltaV.x // update the box delta V
    this.dy += deltaV.y
    var accelA = Fa / (toCenter.mag  * this.mass); // for the angular component get the rotation
                                                   // acceleration
    this.dr += accelA;// now add that to the box delta r
}

// make a box

ctx.globalAlpha = 1;
var lx,ly;
function update(){
   // clearLog();
    ctx.setTransform(1, 0, 0, 1, 0, 0);
    ctx.clearRect(0, 0, canvas.width, canvas.height);

    ctx.setTransform(1, 0, 0, 1, 0, 0);
    ctx.lineWidth = 1;
    ctx.strokeStyle = "black";
    ctx.fillStyle = "#888";
    ctx.fillRect(INSET, INSET, canvas.width - INSET * 2, canvas.height - INSET * 2);
    ctx.strokeRect(INSET, INSET, canvas.width - INSET * 2, canvas.height - INSET * 2);
    
    
    ctx.lineWidth = 2;
    ctx.strokeStyle = "black";

    box.update();
    box.draw();    
    if(mouse.buttonRaw & 1){
        var force = asPolar(vector(mouse.x - lx, mouse.y - ly));
        force.mag *= box.mass * 0.1;
        box.applyForce(force,vector(mouse.x, mouse.y))
        addTempVec(vector(mouse.x, mouse.y), asPolar(vector(mouse.x - lx, mouse.y - ly)), "Cyan", LIFE, 5);
    }
    lx = mouse.x;
    ly = mouse.y;
    for(i = 0; i < 4; i++){
        var p = box.getPoint(i);
        // only do one collision per frame or we will end up adding energy
        if(p.pos.x < INSET){
            box.x += (INSET) - p.pos.x;
            doCollision(p,3)
        }else 
        if( p.pos.x > canvas.width-INSET){
            box.x += (canvas.width - INSET) - p.pos.x;
            doCollision(p,1)
        }else 
        if(p.pos.y < INSET){
            box.y += (INSET) -p.pos.y;
            doCollision(p,0)
        }else  
        if( p.pos.y > canvas.height-INSET){
            box.y += (canvas.height - INSET) -p.pos.y;
            doCollision(p,2)
        }


        drawVec(p.pos,p.velocity,"blue")

    }
    
    drawTempVecs();
    ctx.globalAlpha = 1;
    drawText(box.getDesc(),canvas.width/2,FONT_SIZE,FONT,FONT_SIZE,"black");
    drawText("Click drag to apply force to box",canvas.width/2,FONT_SIZE +17,FONT,14,"black");

    requestAnimationFrame(update)   


}



update();
Gloriane answered 27/4, 2016 at 9:8 Comment(3)
Hm, looks good. I just skimmed it and will take a closer look in a little while, but will this apply for body collisions as well?Dorsy
@Dorsy it will apply to any rigid untethered object that has a uniform mass distribution.Gloriane
This contribution is extraordinary. Congratulations.Disport

© 2022 - 2024 — McMap. All rights reserved.