for the transpose:
testing a bit in ipython showed:
In [1]: import numpy
In [2]: x = numpy.ones((5,6,3,4))
In [3]: numpy.transpose(x,(0,1,3,2)).shape
Out[3]: (5, 6, 4, 3)
so you can just do
Atrans = numpy.transpose(A,(0,1,3,2))
to transpose the second and third dimensions (while leaving dimension 0 and 1 the same)
for the inversion:
the last example of http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv
Inverses of several matrices can be computed at once:
from numpy.linalg import inv
a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
>>> inv(a)
array([[[-2. , 1. ],
[ 1.5, -0.5]],
[[-5. , 2. ],
[ 3. , -1. ]]])
So i guess in your case, the inversion can be done with just
Ainv = inv(A)
and it will know that the last two dimensions are the ones it is supposed to invert over, and that the first dimensions are just how you stacked your data. This should be much faster
speed difference
for the transpose: your method needs 3.77557015419 sec, and mine needs 2.86102294922e-06 sec (which is a speedup of over 1 million times)
for the inversion: i guess my numpy version is not high enough to try that numpy.linalg.inv trick with (n,n,3,3) shape, to see the speedup there (my version is 1.6.2, and the docs i based my solution on are for 1.8, but it should work on 1.8, if someone else can test that?)