I am trying to create a ResNet50 model for a regression problem, with an output value ranging from -1 to 1.
I omitted the classes argument, and in my preprocessing step I resize my images to 224,224,3.
I try to create the model with
def create_resnet(load_pretrained=False):
if load_pretrained:
weights = 'imagenet'
else:
weights = None
# Get base model
base_model = ResNet50(weights=weights)
optimizer = Adam(lr=1e-3)
base_model.compile(loss='mse', optimizer=optimizer)
return base_model
and then create the model, print the summary and use the fit_generator to train
history = model.fit_generator(batch_generator(X_train, y_train, 100, 1),
steps_per_epoch=300,
epochs=10,
validation_data=batch_generator(X_valid, y_valid, 100, 0),
validation_steps=200,
verbose=1,
shuffle = 1)
I get an error though that says
ValueError: Error when checking target: expected fc1000 to have shape (1000,) but got array with shape (1,)
Looking at the model summary, this makes sense, since the final Dense layer has an output shape of (None, 1000)
fc1000 (Dense) (None, 1000) 2049000 avg_pool[0][0]
But I can't figure out how to modify the model. I've read through the Keras documentation and looked at several examples, but pretty much everything I see is for a classification model.
How can I modify the model so it is formatted properly for regression?