Below is my solution. The space complexity is just O(a + b)
, and the running time (if I can calculate correctly..) is O(b*a)
, as for each character in b
, we may do a recursion a
levels deep.
md5's answer is a good one and will be faster!!
public class FindPermutations {
public static void main(String[] args) {
System.out.println(numPerms(new String("xacxzaa"),
new String("fxaazxacaaxzoecazxaxaz")));
System.out.println(numPerms(new String("ABCD"),
new String("BACDGABCDA")));
System.out.println(numPerms(new String("AABA"),
new String("AAABABAA")));
// prints 4, then 3, then 3
}
public static int numPerms(final String a, final String b) {
int sum = 0;
for (int i = 0; i < b.length(); i++) {
if (permPresent(a, b.substring(i))) {
sum++;
}
}
return sum;
}
// is a permutation of a present at the start of b?
public static boolean permPresent(final String a, final String b) {
if (a.isEmpty()) {
return true;
}
if (b.isEmpty()) {
return false;
}
final char first = b.charAt(0);
if (a.contains(b.substring(0, 1))) {
// super ugly, but removes first from a
return permPresent(a.substring(0, a.indexOf(first)) + a.substring(a.indexOf(first)+1, a.length()),
b.substring(1));
}
return false;
}
}
For searchability's sake, I arrive on this page afer looking for other solutions to compare mine to, with the problem originating from watching this clip: https://www.hackerrank.com/domains/tutorials/cracking-the-coding-interview. The original problem statement was something like 'find all permutations of s in b'.
O(n+s)
... – Canonical