Applying the optim function in R in C++ with Rcpp
Asked Answered
G

2

6

I am trying to call R function optim() in Rcpp. I saw an example in Calling R's optim function from within C++ using Rcpp, but I am unable to modify it correctly for my use case. Basically, the objective function depends on the x and y but I want to optimize it with respect to b.

Here is the R code that does what I want:

example_r = function(b, x, y) {
  phi = rnorm(length(x))

  tar_val = (x ^ 2 + y ^ 2) * b * phi

  objftn_r = function(beta, x, y) {
    obj_val = (x ^ 2 + y ^ 2) * beta

    return(obj_val)
  }

  b1 = optim(b, function(beta) {
    sum((objftn_r(beta, x, y) - tar_val) ^ 2)
  }, method = "BFGS")$par

  result = (x ^ 2 + y ^ 2) * b1

  return(b1)
}

Here's is my attempt to translate it to _RcppArmadillo:

#include <RcppArmadillo.h>
using namespace Rcpp;

// [[Rcpp::depends(RcppArmadillo)]]

arma::vec example_rcpp(arma::vec b, arma::vec x, arma::vec y){

  arma::vec tar_val = pow(x,2)%b-pow(y,2);

  return tar_val;
}

// [[Rcpp::export]]
arma::vec optim_rcpp(const arma::vec& init_val, arma::vec& x, arma::vec& y){

  Rcpp::Environment stats("package:stats"); 
  Rcpp::Function optim = stats["optim"];

  Rcpp::List opt_results = optim(Rcpp::_["par"]    = init_val,
                                 Rcpp::_["fn"]     = Rcpp::InternalFunction(&example_rcpp),
                                 Rcpp::_["method"] = "BFGS");

  arma::vec out = Rcpp::as<arma::vec>(opt_results[0]);

  return out;
} 

However, this code is returning:

> optim_rcpp(1:3,2:4,3:5)
Error in optim_rcpp(1:3, 2:4, 3:5) : not compatible with requested type

I'm not sure what the error is here.

Grassi answered 19/1, 2018 at 19:18 Comment(3)
Remove // [[Rcpp::export]] above arma::vec example_rcpp declaration. Add in the proper header include for RcppArmadillo and Rcpp attributes dependency. Pass in the x and y values as well in the call to optim...Mockup
I edited it, but it's not working as well. I also edited some codes in the questions. Anyway, Thanks for your advice!Grassi
A better way might be using my R package roptim link.Dally
M
19

Before we begin, I have a few remarks:

  1. Please show all of your attempt.
  2. Do not delete or shorten code unless asked.
  3. Keep the scope of your question narrow.
    • Using optim from R in C++ is very different than using in C++ the underlying C++ code for opt() from nlopt.
  4. Avoid spamming questions.
    • If you find yourself asking more than 3 questions in rapid succession, please read the documentation or talk in person with someone familiar with the content.

I've cleaned up your question as a result... But, in the future, this likely will not happen.

Data Generation Process

The data generation process seems to be done in 2 steps: First, outside of the example_r function, and, then inside the function.

This should be simplified so that it is done outside of the optimization function. For example:

generate_data = function(n, x_mu = 0, y_mu = 1, beta = 1.5) {

  x = rnorm(n, x_mu)
  y = rnorm(n, y_mu)

  phi = rnorm(length(x))

  tar_val = (x ^ 2 + y ^ 2) * beta * phi

  simulated_data = list(x = x, y = y, beta = beta, tar_val = tar_val)
  return(simulated_data)
}

Objective Functions and R's optim

Objective functions must return a single value, e.g. a scalar, in R. Under the posted R code, there was effectively two functions designed to act as an objective function in sequence, e.g.

objftn_r = function(beta, x, y) {
  obj_val = (x ^ 2 + y ^ 2) * beta

  return(obj_val)
}

b1 = optim(b, function(beta) {
  sum((objftn_r(beta, x, y) - tar_val) ^ 2)
}, method = "BFGS")$par

This objective function should therefore be re-written as:

objftn_r = function(beta_hat, x, y, tar_val) {

  # The predictions generate will be a vector
  est_val = (x ^ 2 + y ^ 2) * beta_hat

  # Here we apply sum of squares which changes it
  # from a vector into a single "objective" value
  # that optim can work with.
  obj_val = sum( ( est_val  - tar_val) ^ 2)

  return(obj_val)
}

From there, the calls should align as:

sim_data = generate_data(10, 1, 2, .3)

b1 = optim(sim_data$beta, fn = objftn_r, method = "BFGS",
           x = sim_data$x, y = sim_data$y, tar_val = sim_data$tar_val)$par

RcppArmadillo Objective Functions

Having fixed the scope and behavior of the R code, let's focus on translating it into RcppArmadillo.

In particular, notice that the objection function defined after the translation returns a vector and not a scalar into optim, which is not a single value. Also of concern is the lack of a tar_val parameter in the objective function. With this in mind, the objective function will translate to:

// changed function return type and 
// the return type of first parameter
double obj_fun_rcpp(double& beta_hat, 
                    arma::vec& x, arma::vec& y, arma::vec& tar_val){

  // Changed from % to * as it is only appropriate if  
  // `beta_hat` is the same length as x and y.
  // This is because it performs element-wise multiplication
  // instead of a scalar multiplication on a vector
  arma::vec est_val = (pow(x, 2) - pow(y, 2)) * beta_hat;

  // Compute objective value
  double obj_val = sum( pow( est_val - tar_val, 2) );

  // Return a single value
  return obj_val;
}

Now, with the objective function set, let's address the Rcpp call into R for optim() from C++. In this function, the parameters of the function must be explicitly supplied. So, x, y, and tar_val must be present in the optim call. Thus, we will end up with:

// [[Rcpp::export]]
arma::vec optim_rcpp(double& init_val,
                     arma::vec& x, arma::vec& y, arma::vec& tar_val){

  // Extract R's optim function
  Rcpp::Environment stats("package:stats"); 
  Rcpp::Function optim = stats["optim"];

  // Call the optim function from R in C++ 
  Rcpp::List opt_results = optim(Rcpp::_["par"]    = init_val,
                                 // Make sure this function is not exported!
                                 Rcpp::_["fn"]     = Rcpp::InternalFunction(&obj_fun_rcpp),
                                 Rcpp::_["method"] = "BFGS",
                                 // Pass in the other parameters as everything
                                 // is scoped environmentally
                                 Rcpp::_["x"] = x,
                                 Rcpp::_["y"] = y,
                                 Rcpp::_["tar_val"] = tar_val);

  // Extract out the estimated parameter values
  arma::vec out = Rcpp::as<arma::vec>(opt_results[0]);

  // Return estimated values
  return out;
}

All together

The full functioning code can be written in test_optim.cpp and compiled via sourceCpp() as:

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// changed function return type and 
// the return type of first parameter
// DO NOT EXPORT THIS FUNCTION VIA RCPP ATTRIBUTES
double obj_fun_rcpp(double& beta_hat, 
                    arma::vec& x, arma::vec& y, arma::vec& tar_val){

  // Changed from % to * as it is only appropriate if  
  // `beta_hat` is the same length as x and y.
  // This is because it performs element-wise multiplication
  // instead of a scalar multiplication on a vector
  arma::vec est_val = (pow(x, 2) - pow(y, 2)) * beta_hat;

  // Compute objective value
  double obj_val = sum( pow( est_val - tar_val, 2) );

  // Return a single value
  return obj_val;
}


// [[Rcpp::export]]
arma::vec optim_rcpp(double& init_val,
                     arma::vec& x, arma::vec& y, arma::vec& tar_val){

  // Extract R's optim function
  Rcpp::Environment stats("package:stats"); 
  Rcpp::Function optim = stats["optim"];

  // Call the optim function from R in C++ 
  Rcpp::List opt_results = optim(Rcpp::_["par"]    = init_val,
                                 // Make sure this function is not exported!
                                 Rcpp::_["fn"]     = Rcpp::InternalFunction(&obj_fun_rcpp),
                                 Rcpp::_["method"] = "BFGS",
                                 // Pass in the other parameters as everything
                                 // is scoped environmentally
                                 Rcpp::_["x"] = x,
                                 Rcpp::_["y"] = y,
                                 Rcpp::_["tar_val"] = tar_val);

  // Extract out the estimated parameter values
  arma::vec out = Rcpp::as<arma::vec>(opt_results[0]);

  // Return estimated values
  return out;
}

Test Case

# Setup some values
beta = 2
x = 2:4
y = 3:5

# Set a seed for reproducibility
set.seed(111)

phi = rnorm(length(x))

tar_val = (x ^ 2 + y ^ 2) * beta * phi

optim_rcpp(beta, x, y, tar_val)
#          [,1]
# [1,] 2.033273

Note: If you would like to avoid a matrix of size 1 x1 from being returned please use double as the return parameter of optim_rcpp and switch Rcpp::as<arma::vec> to Rcpp::as<double>

Mockup answered 20/1, 2018 at 23:54 Comment(4)
This is an awesome answer. It's too bad it is to a question with a negative score as it concisely provides a foundation for how to think about going from R to Rcpp. Huge fan!!Kishke
The premise is problematic. When you ask yourself "well how would I call optim() from C++" you put yourself into a hole. optim() is still an R function. Better to learn how to use a C++-based optimizer. Now, the "No Free Lunch" theorem still holds -- but there are things worth working out in detail.Myriapod
@JosephWood a better overview of translating from R to Rcpp is given in the new Rcpp introduction vignette by Dirk & myself. See: peerj.com/preprints/3188Mockup
Regarding @DirkEddelbuettel 's comment. I agree. However, the portability and accessibility of these non-optim functions is presently problematic. Also, this question is primarily directed to a previous answer of mine that used the above approach.Mockup
B
0

I happened to write a C++ version of stats::optimize() function. It consists of optimize.h, optimize.cpp and optim_test.cpp. The former two contain classes and functions ready to use, and the last is a script containing unit tests and demonstrate the use of the functions.

This is optimize.h:

#ifndef OPTIMIZE_R
#define OPTIMIZE_R

#include <iostream>
#include <cmath>
#include <cfloat>

// Optim class: virtual class to find max/min of univariate function in R manner
// Usually a subclass is used to define a substantiated function
// Member function (public): value, evaluate function with double x
// Other parameters may be added into the subclass as members
class Optim
{
public:
    virtual double value(double x) = 0;
    virtual ~Optim() {}
};

// Define optimize function
double optimize(Optim* optim, double lower, double upper, bool maximum, double tol);

#endif

This is optimize.cpp, where Brent_fmin() is adapted from stats C code with the same name:

#include "optimize.h"
using namespace std;

// This function is copied from R: stats/src/optimize.c
// Add argument maximum and its use in function pointer *f
// Define Brent optimization
double Brent_fmin(double ax, double bx, double (*f)(double, void *, bool),
          void *info, bool maximum, double tol)
{
    /*  c is the squared inverse of the golden ratio */
    const double c = (3. - sqrt(5.)) * .5;

    /* Local variables */
    double a, b, d, e, p, q, r, u, v, w, x;
    double t2, fu, fv, fw, fx, xm, eps, tol1, tol3;

/*  eps is approximately the square root of the relative machine precision. */
    eps = DBL_EPSILON;
    tol1 = eps + 1.;/* the smallest 1.000... > 1 */
    eps = sqrt(eps);

    a = ax;
    b = bx;
    v = a + c * (b - a);
    w = v;
    x = v;

    d = 0.;/* -Wall */
    e = 0.;
    fx = (*f)(x, info, maximum);
    fv = fx;
    fw = fx;
    tol3 = tol / 3.;

/*  main loop starts here ----------------------------------- */

    for(;;) {
    xm = (a + b) * .5;
    tol1 = eps * fabs(x) + tol3;
    t2 = tol1 * 2.;

    /* check stopping criterion */

    if (fabs(x - xm) <= t2 - (b - a) * .5) break;
    p = 0.;
    q = 0.;
    r = 0.;
    if (fabs(e) > tol1) { /* fit parabola */

        r = (x - w) * (fx - fv);
        q = (x - v) * (fx - fw);
        p = (x - v) * q - (x - w) * r;
        q = (q - r) * 2.;
        if (q > 0.) p = -p; else q = -q;
        r = e;
        e = d;
    }

    if (fabs(p) >= fabs(q * .5 * r) ||
        p <= q * (a - x) || p >= q * (b - x)) { /* a golden-section step */

        if (x < xm) e = b - x; else e = a - x;
        d = c * e;
    }
    else { /* a parabolic-interpolation step */

        d = p / q;
        u = x + d;

        /* f must not be evaluated too close to ax or bx */

        if (u - a < t2 || b - u < t2) {
        d = tol1;
        if (x >= xm) d = -d;
        }
    }

    /* f must not be evaluated too close to x */

    if (fabs(d) >= tol1)
        u = x + d;
    else if (d > 0.)
        u = x + tol1;
    else
        u = x - tol1;

    fu = (*f)(u, info, maximum);

    /*  update  a, b, v, w, and x */

    if (fu <= fx) {
        if (u < x) b = x; else a = x;
        v = w;    w = x;   x = u;
        fv = fw; fw = fx; fx = fu;
    } else {
        if (u < x) a = u; else b = u;
        if (fu <= fw || w == x) {
        v = w; fv = fw;
        w = u; fw = fu;
        } else if (fu <= fv || v == x || v == w) {
        v = u; fv = fu;
        }
    }
    }
    /* end of main loop */

    return x;
} // Brent_fmin()

// Optim's value function: wrapper around Optim::value
// This function is used in Brent_fmin as function pointer
double optim_value(double x, Optim* optim, bool maximum) {
    double out = (*optim).value(x);
    if (maximum == true) {
        out = -out;
    }
    return out;
}

// Optimize function: finding minimun of class-based univariate function
// optim: an object inheriting from Optim, with double value(double) member function
// Other parameters can be stored in members of Optim class
double optimize(Optim* optim, double lower, double upper, bool maximum = false,
                double tol = pow(DBL_EPSILON, 0.25)) {
    return Brent_fmin(lower, upper, (double (*)(double, void*, bool)) optim_value, optim,
        maximum, tol);
}

This is optim_test.cpp containing unit tests:

// Unit test
#include "optimize.h"
using namespace std;

// Define a class of parabolic function: f(x) = a * x^2 + b * x + c
class Parabol: public Optim
{
private:
    const double a;
    const double b;
    const double c;
public:
    Parabol(double a_, double b_, double c_) : a(a_), b(b_), c(c_) {}
    double value(double x) {
        return a * pow(x, 2) + b * x + c;
    }
};

// Main function to min/max a parabolic function
int main() {
    Parabol parabol1(1, -5, 3);
    double x_min = optimize(&parabol1, 0, 5, false, 1e-3);
    cout << x_min << endl;
    Parabol parabol2(-1, -5, 3);
    double x_max = optimize(&parabol2, -5, 0, true, 1e-3);
    cout << x_max << endl;
    return 0;
}

These files have been compiled and run by Visual C++ 6.0. The output from the main() function is:

2.5
-2.5
Press any key to continue
Bini answered 26/3, 2023 at 4:50 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.